Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(Algebra/Module): snake lemma #17948

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -497,6 +497,7 @@ import Mathlib.Algebra.Module.PointwisePi
import Mathlib.Algebra.Module.Prod
import Mathlib.Algebra.Module.Projective
import Mathlib.Algebra.Module.Rat
import Mathlib.Algebra.Module.SnakeLemma
import Mathlib.Algebra.Module.Submodule.Basic
import Mathlib.Algebra.Module.Submodule.Bilinear
import Mathlib.Algebra.Module.Submodule.EqLocus
Expand Down
285 changes: 285 additions & 0 deletions Mathlib/Algebra/Module/SnakeLemma.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
/-
Copyright (c) 2024 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.Algebra.Exact

/-!

# The snake lemma in terms of modules

The snake lemma is proven in `Algebra/Homology/ShortComplex/SnakeLemma.lean` for all abelian
categories, but for definitional equality and universe issues we reprove them here for modules.

## Main results
- `SnakeLemma.δ`: The connecting homomorphism guranteed by the snake lemma.
- `SnakeLemma.exact_δ_left`: The connecting homomorphism is exact on the right.
- `SnakeLemma.exact_δ_right`: The connecting homomorphism is exact on the left.

-/

open LinearMap hiding id
open Function

/-!
Suppose we have an exact commutative diagram
```
K₂ -F-→ K₃
| |
ι₂ ι₃
↓ ↓
M₁ -f₁→ M₂ -f₂→ M₃
| | |
i₁ i₂ i₃
↓ ↓ ↓
N₁ -g₁→ N₂ -g₂→ N₃
| |
π₁ π₂
↓ ↓
C₁ -G-→ C₂

```
Such that `f₂` is surjective with a (set-theoretic) section `ρ`, `g₁` is injective with a
(set-theoretic) retraction `π`, and that `ι₃` is injective and `π₁` is surjective.
-/

variable {R} [CommRing R] {M₁ M₂ M₃ N₁ N₂ N₃}
[AddCommGroup M₁] [Module R M₁] [AddCommGroup M₂] [Module R M₂] [AddCommGroup M₃] [Module R M₃]
[AddCommGroup N₁] [Module R N₁] [AddCommGroup N₂] [Module R N₂] [AddCommGroup N₃] [Module R N₃]
(i₁ : M₁ →ₗ[R] N₁) (i₂ : M₂ →ₗ[R] N₂) (i₃ : M₃ →ₗ[R] N₃)
(f₁ : M₁ →ₗ[R] M₂) (f₂ : M₂ →ₗ[R] M₃) (hf : Exact f₁ f₂)
(g₁ : N₁ →ₗ[R] N₂) (g₂ : N₂ →ₗ[R] N₃) (hg : Exact g₁ g₂)
(h₁ : g₁.comp i₁ = i₂.comp f₁) (h₂ : g₂.comp i₂ = i₃.comp f₂)
(σ : M₃ → M₂) (hσ : f₂ ∘ σ = id) (ρ : N₂ → N₁) (hρ : ρ ∘ g₁ = id)
{K₂ K₃ C₁ C₂} [AddCommGroup K₂] [Module R K₂] [AddCommGroup K₃] [Module R K₃]
[AddCommGroup C₁] [Module R C₁] [AddCommGroup C₂] [Module R C₂]
(ι₂ : K₂ →ₗ[R] M₂) (hι₂ : Exact ι₂ i₂) (ι₃ : K₃ →ₗ[R] M₃) (hι₃ : Exact ι₃ i₃)
(π₁ : N₁ →ₗ[R] C₁) (hπ₁ : Exact i₁ π₁) (π₂ : N₂ →ₗ[R] C₂) (hπ₂ : Exact i₂ π₂)

include hg hρ h₂ hσ hι₃ in
lemma SnakeLemma.δ_aux (x : K₃) : g₁ (ρ (i₂ (σ (ι₃ x)))) = i₂ (σ (ι₃ x)) := by
obtain ⟨d, hd⟩ : i₂ (σ (ι₃ x)) ∈ range g₁ := by
rw [← hg.linearMap_ker_eq, mem_ker, show g₂ (i₂ _) = i₃ (f₂ _) from DFunLike.congr_fun h₂ _,
← @comp_apply _ _ _ f₂ σ, hσ, id_eq, ← i₃.comp_apply,
hι₃.linearMap_comp_eq_zero, zero_apply]
rw [← hd, ← ρ.comp_apply, hρ, id_eq]

include hf h₁ hρ hπ₁ in
lemma SnakeLemma.eq_of_eq (x : K₃)
(y₁) (hy₁ : f₂ y₁ = ι₃ x) (z₁) (hz₁ : g₁ z₁ = i₂ y₁)
(y₂) (hy₂ : f₂ y₂ = ι₃ x) (z₂) (hz₂ : g₁ z₂ = i₂ y₂) : π₁ z₁ = π₁ z₂ := by
have := sub_eq_zero.mpr (hy₁.trans hy₂.symm)
rw [← map_sub, hf] at this
obtain ⟨d, hd⟩ := this
rw [← eq_sub_iff_add_eq.mp hd, map_add, ← hz₂, ← sub_eq_iff_eq_add, ← map_sub,
← i₂.comp_apply, ← h₁, LinearMap.comp_apply,
(HasLeftInverse.injective ⟨ρ, congr_fun hρ⟩).eq_iff] at hz₁
rw [← sub_eq_zero, ← map_sub, hz₁, hπ₁]
exact ⟨_, rfl⟩

/--
**Snake Lemma**
Supppose we have an exact commutative diagram
```
K₃
|
ι₃
M₁ -f₁→ M₂ -f₂→ M₃
| | |
i₁ i₂ i₃
↓ ↓ ↓
N₁ -g₁→ N₂ -g₂→ N₃
|
π₁
C₁

```
Such that `f₂` is surjective with a (set-theoretic) section `ρ`, `g₁` is injective with a
(set-theoretic) retraction `π`,
then the map `π₁ ∘ ρ ∘ i₂ ∘ σ ∘ ι₃` is a linear map from `K₃` to `C₁`.
Comment on lines +100 to +102
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
Such that `f₂` is surjective with a (set-theoretic) section `ρ`, `g₁` is injective with a
(set-theoretic) retraction `π`,
then the map `π₁ ∘ ρ ∘ i₂ ∘ σ ∘ ι₃` is a linear map from `K₃` to `C₁`.
Such that `f₂` is surjective with a (set-theoretic) section `σ`, `g₁` is injective with a
(set-theoretic) retraction `ρ`,
then the map `π₁ ∘ ρ ∘ i₂ ∘ σ ∘ ι₃` is a linear map from `K₃` to `C₁`.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The same typo appears in several other places in the file.


Also see `SnakeLemma.δ'` for a noncomputable version
that does not require an explicit section and retraction.
-/
def SnakeLemma.δ : K₃ →ₗ[R] C₁ :=
haveI H₁ : ∀ x, f₂ (σ x) = x := congr_fun hσ
haveI H₂ := δ_aux i₂ i₃ f₂ g₁ g₂ hg h₂ σ hσ ρ hρ ι₃ hι₃
{ toFun := fun x ↦ π₁ (ρ (i₂ (σ (ι₃ x))))
map_add' := fun x y ↦ by
rw [← map_add]
exact eq_of_eq i₁ i₂ f₁ f₂ hf g₁ h₁ ρ hρ ι₃ π₁ hπ₁ (x + y) _ (H₁ _) _ (H₂ _)
(σ (ι₃ x) + σ (ι₃ y)) (by simp only [map_add, H₁]) _ (by simp only [map_add, H₂])
map_smul' := fun r x ↦ by
simp only [← map_smul, RingHom.id_apply]
apply eq_of_eq i₁ i₂ f₁ f₂ hf g₁ h₁ ρ hρ ι₃ π₁ hπ₁ (r • x) _ (H₁ _) _ (H₂ _)
(r • σ (ι₃ x)) (by simp only [map_smul, H₁]) _ (by simp only [map_smul, H₂]) }

lemma SnakeLemma.δ_eq (x : K₃) (y) (hy : f₂ y = ι₃ x) (z) (hz : g₁ z = i₂ y) :
δ i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ σ hσ ρ hρ ι₃ hι₃ π₁ hπ₁ x = π₁ z :=
eq_of_eq i₁ i₂ f₁ f₂ hf g₁ h₁ ρ hρ ι₃ π₁ hπ₁ x _ (congr_fun hσ _) _
(δ_aux i₂ i₃ f₂ g₁ g₂ hg h₂ σ hσ ρ hρ ι₃ hι₃ _) y hy z hz

include hι₂ in
/--
Supppose we have an exact commutative diagram
```
K₂ -F-→ K₃
| |
ι₂ ι₃
↓ ↓
M₁ -f₁→ M₂ -f₂→ M₃
| | |
i₁ i₂ i₃
↓ ↓ ↓
N₁ -g₁→ N₂ -g₂→ N₃
|
π₁
C₁

```
Such that `f₂` is surjective with a (set-theoretic) section `ρ`, `g₁` is injective with a
(set-theoretic) retraction `π`, and `ι₃` is injective, then `K₂ -F→ K₂ -δ→ C₁` is exact.
-/
lemma SnakeLemma.exact_δ_right (F : K₂ →ₗ[R] K₃) (hF : f₂.comp ι₂ = ι₃.comp F)
(h : Injective ι₃) :
Exact F (δ i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ σ hσ ρ hρ ι₃ hι₃ π₁ hπ₁) := by
haveI H₁ : ∀ x, f₂ (σ x) = x := congr_fun hσ
haveI H₂ := δ_aux i₂ i₃ f₂ g₁ g₂ hg h₂ σ hσ ρ hρ ι₃ hι₃
intro x
constructor
· intro H
obtain ⟨y, hy⟩ := (hπ₁ _).mp H
obtain ⟨k, hk⟩ : σ (ι₃ x) - f₁ y ∈ Set.range ι₂ := by
rw [← hι₂, map_sub, ← H₂, ← hy, sub_eq_zero]; exact congr($h₁ y)
refine ⟨k, h ?_⟩
rw [← ι₃.comp_apply, ← hF, f₂.comp_apply, hk, map_sub, H₁, hf.apply_apply_eq_zero, sub_zero]
· rintro ⟨y, rfl⟩
exact (δ_eq i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ σ hσ ρ hρ ι₃ hι₃ π₁ hπ₁ _ (ι₂ y) congr($hF y)
_ (by rw [map_zero, hι₂.apply_apply_eq_zero])).trans π₁.map_zero

include hπ₂ in
/--
Supppose we have an exact commutative diagram
```
K₃
|
ι₃
M₁ -f₁→ M₂ -f₂→ M₃
| | |
i₁ i₂ i₃
↓ ↓ ↓
N₁ -g₁→ N₂ -g₂→ N₃
| |
π₁ π₂
↓ ↓
C₁ -G-→ C₂

```
Such that `f₂` is surjective with a (set-theoretic) section `ρ`, `g₁` is injective with a
(set-theoretic) retraction `π`, and `π₁` is surjective, then `K₂ -δ→ C₁ -G→ C₂` is exact.
-/
lemma SnakeLemma.exact_δ_left (G : C₁ →ₗ[R] C₂) (hF : G.comp π₁ = π₂.comp g₁) (h : Surjective π₁) :
Exact (δ i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ σ hσ ρ hρ ι₃ hι₃ π₁ hπ₁) G := by
haveI H₁ : ∀ x, f₂ (σ x) = x := congr_fun hσ
haveI H₂ := δ_aux i₂ i₃ f₂ g₁ g₂ hg h₂ σ hσ ρ hρ ι₃ hι₃
intro x
constructor
· intro H
obtain ⟨x, rfl⟩ := h x
obtain ⟨y, hy⟩ := (hπ₂ (g₁ x)).mp (by simpa only [← LinearMap.comp_apply, hF] using H)
obtain ⟨z, hz⟩ : f₂ y ∈ range ι₃ := (hι₃ (f₂ y)).mp (by rw [← i₃.comp_apply, ← h₂,
g₂.comp_apply, hy, hg.apply_apply_eq_zero])
exact ⟨z, δ_eq i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ σ hσ ρ hρ ι₃ hι₃ π₁ hπ₁ _ _ hz.symm _ hy.symm⟩
· rintro ⟨x, rfl⟩
simp only [δ, id_eq, coe_mk, AddHom.coe_mk]
rw [← G.comp_apply, hF, π₂.comp_apply, H₂, hπ₂.apply_apply_eq_zero]

/--
Supppose we have an exact commutative diagram
```
K₃
|
ι₃
M₁ -f₁→ M₂ -f₂→ M₃
| | |
i₁ i₂ i₃
↓ ↓ ↓
N₁ -g₁→ N₂ -g₂→ N₃
|
π₁
C₁

```
Such that `f₂` is surjective and `g₁` is injective,
then this is the linear map `K₃ → C₁` given by the snake lemma.

Also see `SnakeLemma.δ` for a computable version.
-/
noncomputable def SnakeLemma.δ' (hf₂ : Surjective f₂) (hg₁ : Injective g₁) : K₃ →ₗ[R] C₁ :=
erdOne marked this conversation as resolved.
Show resolved Hide resolved
δ i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ _ (funext (surjInv_eq hf₂)) _ (invFun_comp hg₁) ι₃ hι₃ π₁ hπ₁

lemma SnakeLemma.δ'_eq (hf₂ : Surjective f₂) (hg₁ : Injective g₁)
(x : K₃) (y) (hy : f₂ y = ι₃ x) (z) (hz : g₁ z = i₂ y) :
δ' i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ ι₃ hι₃ π₁ hπ₁ hf₂ hg₁ x = π₁ z :=
SnakeLemma.δ_eq _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ‹_› ‹_› _ ‹_›

include hι₂ in
/--
Supppose we have an exact commutative diagram
```
K₂ -F-→ K₃
| |
ι₂ ι₃
↓ ↓
M₁ -f₁→ M₂ -f₂→ M₃
| | |
i₁ i₂ i₃
↓ ↓ ↓
N₁ -g₁→ N₂ -g₂→ N₃
|
π₁
C₁

```
Such that `f₂` is surjective, `g₁` is injective, and `ι₃` is injective,
then `K₂ -F→ K₂ -δ→ C₁` is exact.
-/
lemma SnakeLemma.exact_δ'_right (hf₂ : Surjective f₂) (hg₁ : Injective g₁)
(F : K₂ →ₗ[R] K₃) (hF : f₂.comp ι₂ = ι₃.comp F) (h : Injective ι₃) :
Exact F (δ' i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ ι₃ hι₃ π₁ hπ₁ hf₂ hg₁) :=
SnakeLemma.exact_δ_right _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ‹_› _ _ _ _ _ ‹_› ‹_›

include hπ₂ in
/--
Supppose we have an exact commutative diagram
```
K₃
|
ι₃
M₁ -f₁→ M₂ -f₂→ M₃
| | |
i₁ i₂ i₃
↓ ↓ ↓
N₁ -g₁→ N₂ -g₂→ N₃
| |
π₁ π₂
↓ ↓
C₁ -G-→ C₂

```
Such that `f₂` is surjective, `g₁` is injective, and `π₁` is surjective,
then `K₂ -δ→ C₁ -G→ C₂` is exact.
-/
lemma SnakeLemma.exact_δ'_left (hf₂ : Surjective f₂) (hg₁ : Injective g₁)
(G : C₁ →ₗ[R] C₂) (hF : G.comp π₁ = π₂.comp g₁) (h : Surjective π₁) :
Exact (δ' i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ ι₃ hι₃ π₁ hπ₁ hf₂ hg₁) G :=
SnakeLemma.exact_δ_left _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ‹_› _ ‹_› ‹_›
Loading