-
Notifications
You must be signed in to change notification settings - Fork 331
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat(RingTheory.MvPowerSeries.Topology): define the product topology on mv power series #14866
base: master
Are you sure you want to change the base?
Changes from 74 commits
7cb1908
bdef1b0
06c9528
543b97f
c2c4976
3d5a7d0
2649640
8345665
805f1d5
54bbcea
8d001f7
d507e68
1191b60
cb8c681
5820cc0
6e26559
aae13ce
df1d019
b2bbb36
f649884
4831b9b
bdfe910
bafb2d7
d744b9a
bc296a4
93df652
da2b237
c6886c7
a2049f3
e7c89bd
165e928
3a0ec1e
4ecd44c
8dea296
e0eb0fb
63924ca
72f8dce
521492a
3054cbb
ab06f0f
ecade7c
c82153a
94ea8bf
c3e9092
54dafe5
6758185
9123cf2
f1f83c1
761bbcf
0d1c9d6
b9da976
c96c50c
0492feb
c2d9b6f
48d2f35
13cb3b2
d167eb3
8d7a099
c21f5dd
f46bac1
ddd42b9
3a3dbf4
082d250
19944af
9bf21d8
d03c51f
62170fe
0493cf1
379fbca
d0cf16b
e6e52e8
71ed0cc
b369662
5d19e4d
c6faa8a
13fa966
3546540
596670e
a817bc3
8212c6d
054ea42
57fce93
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||
---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,259 @@ | ||||||||
/- | ||||||||
Copyright (c) 2024 Antoine Chambert-Loir, María Inés de Frutos Fernández. All rights reserved. | ||||||||
Released under Apache 2.0 license as described in the file LICENSE. | ||||||||
Authors: Antoine Chambert-Loir, María Inés de Frutos Fernández | ||||||||
-/ | ||||||||
|
||||||||
import Mathlib.RingTheory.Nilpotent.Defs | ||||||||
import Mathlib.RingTheory.MvPowerSeries.Basic | ||||||||
import Mathlib.Topology.Algebra.InfiniteSum.Constructions | ||||||||
import Mathlib.Topology.Algebra.Ring.Basic | ||||||||
import Mathlib.Topology.Algebra.UniformGroup | ||||||||
import Mathlib.Topology.UniformSpace.Pi | ||||||||
|
||||||||
/-! # Product topology on mv power series | ||||||||
|
||||||||
Let `R` be with `Semiring R` and `TopologicalSpace R` | ||||||||
In this file we define the topology on `MvPowerSeries σ R` | ||||||||
that corresponds to the simple convergence on its coefficients. | ||||||||
It is the coarsest topology for which all coefficients maps are continuous. | ||||||||
|
||||||||
When `R` has `UniformSpace R`, we define the corresponding uniform structure. | ||||||||
|
||||||||
This topology can be included by writing `open scoped MvPowerSeries.WithPiTopology`. | ||||||||
|
||||||||
When the type of coefficients has the discrete topology, | ||||||||
it corresponds to the topology defined by [bourbaki1981], chapter 4, §4, n°2. | ||||||||
|
||||||||
It is *not* the adic topology in general. | ||||||||
|
||||||||
- `MvPowerSeries.WithPiTopology.tendsto_pow_zero_of_constantCoeff_nilpotent`, | ||||||||
`MvPowerSeries.WithPiTopology.tendsto_pow_zero_of_constantCoeff_zero`: if the constant coefficient | ||||||||
of `f` is nilpotent, or vanishes, then the powers of `f` converge to zero. | ||||||||
|
||||||||
- `MvPowerSeries.WithPiTopology.tendsto_pow_of_constantCoeff_nilpotent_iff` : the powers of `f` | ||||||||
converge to zero iff the constant coefficient of `f` is nilpotent. | ||||||||
|
||||||||
- `MvPowerSeries.WithPiTopology.hasSum_of_monomials_self` : viewed as an infinite sum, a power | ||||||||
series coverges to itself. | ||||||||
|
||||||||
TODO: add the similar result for the series of homogeneous components. | ||||||||
|
||||||||
## Instances | ||||||||
|
||||||||
- If `R` is a topological (semi)ring, then so is `MvPowerSeries σ R`. | ||||||||
|
||||||||
- If the topology of `R` is T0 or T2, then so is that of `MvPowerSeries σ R`. | ||||||||
|
||||||||
- If `R` is a `UniformAddGroup`, then so is `MvPowerSeries σ R`. | ||||||||
|
||||||||
- If `R` is complete, then so is `MvPowerSeries σ R`. | ||||||||
AntoineChambert-Loir marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||
|
||||||||
-/ | ||||||||
|
||||||||
|
||||||||
theorem MvPowerSeries.apply_eq_coeff {σ R : Type _} [Semiring R] (f : MvPowerSeries σ R) | ||||||||
(d : σ →₀ ℕ) : f d = MvPowerSeries.coeff R d f := | ||||||||
rfl | ||||||||
Comment on lines
+52
to
+54
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Should this go elsewhere? |
||||||||
|
||||||||
namespace MvPowerSeries | ||||||||
|
||||||||
open Function | ||||||||
|
||||||||
variable {σ R : Type*} | ||||||||
|
||||||||
namespace WithPiTopology | ||||||||
|
||||||||
section Topology | ||||||||
|
||||||||
variable [TopologicalSpace R] | ||||||||
|
||||||||
variable (R) in | ||||||||
/-- The pointwise topology on MvPowerSeries -/ | ||||||||
scoped instance : TopologicalSpace (MvPowerSeries σ R) := | ||||||||
Pi.topologicalSpace | ||||||||
|
||||||||
/-- MvPowerSeries on a T0Space form a T0Space -/ | ||||||||
@[scoped instance] | ||||||||
theorem instT0Space [T0Space R] : T0Space (MvPowerSeries σ R) := Pi.instT0Space | ||||||||
|
||||||||
/-- MvPowerSeries on a T2Space form a T2Space -/ | ||||||||
@[scoped instance] | ||||||||
theorem instT2Space [T2Space R] : T2Space (MvPowerSeries σ R) := Pi.t2Space | ||||||||
|
||||||||
variable (R) in | ||||||||
/-- coeff are continuous -/ | ||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||
theorem continuous_coeff [Semiring R] (d : σ →₀ ℕ) : Continuous (MvPowerSeries.coeff R d) := | ||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||
continuous_pi_iff.mp continuous_id d | ||||||||
|
||||||||
variable (R) in | ||||||||
/-- constant_coeff is continuous -/ | ||||||||
theorem continuous_constantCoeff [Semiring R] : Continuous (constantCoeff σ R) := | ||||||||
continuous_coeff R 0 | ||||||||
|
||||||||
/-- A family of power series converges iff it converges coefficientwise -/ | ||||||||
theorem tendsto_iff_coeff_tendsto [Semiring R] {ι : Type*} | ||||||||
(f : ι → MvPowerSeries σ R) (u : Filter ι) (g : MvPowerSeries σ R) : | ||||||||
Filter.Tendsto f u (nhds g) ↔ | ||||||||
∀ d : σ →₀ ℕ, Filter.Tendsto (fun i => coeff R d (f i)) u (nhds (coeff R d g)) := by | ||||||||
rw [nhds_pi, Filter.tendsto_pi] | ||||||||
exact forall_congr' (fun d => Iff.rfl) | ||||||||
|
||||||||
variable (σ R) | ||||||||
|
||||||||
/-- The semiring topology on MvPowerSeries of a topological semiring -/ | ||||||||
@[scoped instance] | ||||||||
theorem instTopologicalSemiring [Semiring R] [TopologicalSemiring R] : | ||||||||
TopologicalSemiring (MvPowerSeries σ R) where | ||||||||
continuous_add := continuous_pi fun d => Continuous.comp continuous_add | ||||||||
(Continuous.prod_mk (Continuous.fst' (continuous_coeff R d)) | ||||||||
(Continuous.snd' (continuous_coeff R d))) | ||||||||
continuous_mul := continuous_pi fun _ => continuous_finset_sum _ (fun i _ => Continuous.comp | ||||||||
continuous_mul (Continuous.prod_mk (Continuous.fst' (continuous_coeff R i.fst)) | ||||||||
(Continuous.snd' (continuous_coeff R i.snd)))) | ||||||||
Comment on lines
+103
to
+110
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This can probably be shortened using dot-notation
Comment on lines
+105
to
+110
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could you try using |
||||||||
|
||||||||
/-- The ring topology on MvPowerSeries of a topological ring -/ | ||||||||
@[scoped instance] | ||||||||
theorem instTopologicalRing (R : Type*) [TopologicalSpace R] [Ring R] [TopologicalRing R] : | ||||||||
TopologicalRing (MvPowerSeries σ R) := | ||||||||
{ instTopologicalSemiring σ R with | ||||||||
continuous_neg := continuous_pi fun d ↦ Continuous.comp continuous_neg | ||||||||
(continuous_coeff R d) } | ||||||||
|
||||||||
variable {σ R} | ||||||||
|
||||||||
variable [DecidableEq σ] [TopologicalSpace R] | ||||||||
|
||||||||
theorem continuous_C [Ring R] [TopologicalRing R] : | ||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||
Continuous (C σ R) := by | ||||||||
apply continuous_of_continuousAt_zero | ||||||||
rw [continuousAt_pi] | ||||||||
intro d | ||||||||
change ContinuousAt (fun y => coeff R d ((C σ R) y)) 0 | ||||||||
by_cases hd : d = 0 | ||||||||
· convert continuousAt_id | ||||||||
rw [hd, coeff_zero_C, id_eq] | ||||||||
· convert continuousAt_const | ||||||||
rw [coeff_C, if_neg hd] | ||||||||
|
||||||||
theorem variables_tendsto_zero [Semiring R] : | ||||||||
Filter.Tendsto (fun s : σ => (X s : MvPowerSeries σ R)) Filter.cofinite (nhds 0) := by | ||||||||
AntoineChambert-Loir marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||
classical | ||||||||
rw [tendsto_pi_nhds] | ||||||||
intro d s hs | ||||||||
rw [Filter.mem_map, Filter.mem_cofinite, ← Set.preimage_compl] | ||||||||
by_cases h : ∃ i, d = Finsupp.single i 1 | ||||||||
· obtain ⟨i, rfl⟩ := h | ||||||||
apply Set.Finite.subset (Set.finite_singleton i) | ||||||||
intro x | ||||||||
simp only [OfNat.ofNat, Zero.zero] at hs | ||||||||
rw [Set.mem_preimage, Set.mem_compl_iff, Set.mem_singleton_iff, not_imp_comm] | ||||||||
intro hx | ||||||||
convert mem_of_mem_nhds hs | ||||||||
rw [apply_eq_coeff (X x) (Finsupp.single i 1), coeff_X, if_neg] | ||||||||
rfl | ||||||||
· simp only [Finsupp.single_eq_single_iff, Ne.symm hx, and_true, one_ne_zero, and_self, | ||||||||
or_self, not_false_eq_true] | ||||||||
· convert Set.finite_empty | ||||||||
rw [Set.eq_empty_iff_forall_not_mem] | ||||||||
intro x | ||||||||
rw [Set.mem_preimage, Set.not_mem_compl_iff] | ||||||||
convert mem_of_mem_nhds hs using 1 | ||||||||
rw [apply_eq_coeff (X x) d, coeff_X, if_neg] | ||||||||
rfl | ||||||||
· intro h' | ||||||||
apply h | ||||||||
exact ⟨x, h'⟩ | ||||||||
AntoineChambert-Loir marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||
|
||||||||
theorem tendsto_pow_zero_of_constantCoeff_nilpotent [CommSemiring R] | ||||||||
{f} (hf : IsNilpotent (constantCoeff σ R f)) : | ||||||||
Filter.Tendsto (fun n : ℕ => f ^ n) Filter.atTop (nhds 0) := by | ||||||||
classical | ||||||||
obtain ⟨m, hm⟩ := hf | ||||||||
simp_rw [tendsto_iff_coeff_tendsto, coeff_zero] | ||||||||
exact fun d => tendsto_atTop_of_eventually_const fun n hn => | ||||||||
AntoineChambert-Loir marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||
coeff_eq_zero_of_constantCoeff_nilpotent hm hn | ||||||||
|
||||||||
theorem tendsto_pow_zero_of_constantCoeff_zero [CommSemiring R] | ||||||||
{f} (hf : constantCoeff σ R f = 0) : | ||||||||
Filter.Tendsto (fun n : ℕ => f ^ n) Filter.atTop (nhds 0) := by | ||||||||
apply tendsto_pow_zero_of_constantCoeff_nilpotent | ||||||||
rw [hf] | ||||||||
exact IsNilpotent.zero | ||||||||
|
||||||||
/-- The powers of a `MvPowerSeries` converge to 0 iff its constant coefficient is nilpotent. | ||||||||
N. Bourbaki, *Algebra II*, [bourbaki1981] (chap. 4, §4, n°2, corollaire de la prop. 3) -/ | ||||||||
theorem tendsto_pow_of_constantCoeff_nilpotent_iff [CommRing R] [DiscreteTopology R] (f) : | ||||||||
Filter.Tendsto (fun n : ℕ => f ^ n) Filter.atTop (nhds 0) ↔ | ||||||||
IsNilpotent (constantCoeff σ R f) := by | ||||||||
refine ⟨?_, tendsto_pow_zero_of_constantCoeff_nilpotent⟩ | ||||||||
intro h | ||||||||
suffices Filter.Tendsto (fun n : ℕ => constantCoeff σ R (f ^ n)) Filter.atTop (nhds 0) by | ||||||||
simp only [Filter.tendsto_def] at this | ||||||||
specialize this {0} _ | ||||||||
suffices ∀ x : R, {x} ∈ nhds x by exact this 0 | ||||||||
AntoineChambert-Loir marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||
rw [← discreteTopology_iff_singleton_mem_nhds]; infer_instance | ||||||||
simp only [map_pow, Filter.mem_atTop_sets, ge_iff_le, Set.mem_preimage, | ||||||||
Set.mem_singleton_iff] at this | ||||||||
obtain ⟨m, hm⟩ := this | ||||||||
use m | ||||||||
apply hm m (le_refl m) | ||||||||
simp only [← @comp_apply _ R ℕ, ← Filter.tendsto_map'_iff] | ||||||||
simp only [Filter.Tendsto, Filter.map_le_iff_le_comap] at h ⊢ | ||||||||
refine le_trans h (Filter.comap_mono ?_) | ||||||||
rw [← Filter.map_le_iff_le_comap] | ||||||||
exact Continuous.continuousAt (continuous_constantCoeff R) | ||||||||
|
||||||||
variable [Semiring R] | ||||||||
|
||||||||
/-- A power series is the sum (in the sense of summable families) of its monomials -/ | ||||||||
theorem hasSum_of_monomials_self (f : MvPowerSeries σ R) : | ||||||||
HasSum (fun d : σ →₀ ℕ => monomial R d (coeff R d f)) f := by | ||||||||
rw [Pi.hasSum] | ||||||||
intro d | ||||||||
convert hasSum_single d ?_ using 1 | ||||||||
exact (coeff_monomial_same d _).symm | ||||||||
exact fun d' h ↦ coeff_monomial_ne (Ne.symm h) _ | ||||||||
|
||||||||
/-- If the coefficient space is T2, then the power series is `tsum` of its monomials -/ | ||||||||
theorem as_tsum [T2Space R] (f : MvPowerSeries σ R) : | ||||||||
f = tsum fun d : σ →₀ ℕ => monomial R d (coeff R d f) := | ||||||||
(HasSum.tsum_eq (hasSum_of_monomials_self _)).symm | ||||||||
|
||||||||
end Topology | ||||||||
|
||||||||
section Uniformity | ||||||||
|
||||||||
variable [UniformSpace R] | ||||||||
|
||||||||
variable (σ R) in | ||||||||
/-- The componentwise uniformity on MvPowerSeries -/ | ||||||||
scoped instance : UniformSpace (MvPowerSeries σ R) := | ||||||||
Pi.uniformSpace fun _ : σ →₀ ℕ => R | ||||||||
|
||||||||
variable (R) | ||||||||
|
||||||||
/-- Coefficients are uniformly continuous -/ | ||||||||
theorem uniformContinuous_coeff [Semiring R] (d : σ →₀ ℕ) : | ||||||||
UniformContinuous fun f : MvPowerSeries σ R => coeff R d f := | ||||||||
uniformContinuous_pi.mp uniformContinuous_id d | ||||||||
|
||||||||
variable [Ring R] | ||||||||
|
||||||||
variable (σ) | ||||||||
|
||||||||
/-- The `UniformAddGroup` structure on `MvPowerSeries` of a `UniformAddGroup` -/ | ||||||||
@[scoped instance] | ||||||||
theorem instUniformAddGroup [UniformAddGroup R] : | ||||||||
UniformAddGroup (MvPowerSeries σ R) := Pi.instUniformAddGroup | ||||||||
|
||||||||
/-- Completeness of the uniform structure on MvPowerSeries -/ | ||||||||
@[scoped instance] | ||||||||
theorem instCompleteSpace [CompleteSpace R] : | ||||||||
CompleteSpace (MvPowerSeries σ R) := Pi.complete _ | ||||||||
|
||||||||
end Uniformity | ||||||||
|
||||||||
end WithPiTopology | ||||||||
|
||||||||
end MvPowerSeries |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.