Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feature_alpha_dropout #23025

Closed
wants to merge 7 commits into from
Closed
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 38 additions & 5 deletions ivy/functional/frontends/torch/nn/functional/dropout_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,19 +11,22 @@
def alpha_dropout(input, p=0.5, training=False, inplace=False):
if p == 0.0 or not training or input.shape == () or input.shape == (0,):
return input
neg_saturation = ivy.log1p(ivy.exp(-ivy.square(input)))
alpha = 1.7580993408473766
a = float(1.0 / ivy.sqrt((alpha * alpha * p + 1) * (1 - p)))
mask = ivy.where(
ivy.random_uniform(shape=input.shape, device=ivy.dev(input)) < p,
0.0,
1.0,
)
b = ((mask - 1) * alpha * a) + alpha * a * p
mask *= a

if inplace:
ivy.inplace_update(input, mask * input + (1 - mask) * neg_saturation)
ivy.inplace_update(input, input / ivy.sqrt(1 - p / (1 - p + 1e-5)))
ivy.inplace_update(input, mask * input + b)
return input
else:
masked = mask * input + (1 - mask) * neg_saturation
return masked / ivy.sqrt(1 - p / (1 - p + 1e-5))
masked = mask * input + b
return masked


@to_ivy_arrays_and_back
Expand Down Expand Up @@ -61,3 +64,33 @@ def dropout3d(input, p=0.5, training=True, inplace=False):
input, p, training=training, data_format="NDHWC", out=input
)
return ivy.dropout3d(input, p, training=training, data_format="NDHWC")


# ToDo: this function will be simplified once ivy.feature_alpha_dropout is implemented
@to_ivy_arrays_and_back
@with_unsupported_dtypes({"2.0.1 and below": ("float16",)}, "torch")
def feature_alpha_dropout(input, p=0.5, training=False, inplace=False):
if p == 0.0 or not training or len(input.shape) < 4:
return input
alpha = 1.7580993408473766
a = float(1.0 / ivy.sqrt((alpha * alpha * p + 1) * (1 - p)))

mask_shape = input.shape[0:2]
for _ in range(2, len(input.shape)):
mask_shape += (1,)
feature_mask = ivy.where(
ivy.random_uniform(shape=mask_shape, device=ivy.dev(input)) < p,
0.0,
1.0,
)
mask = ivy.ones(input.shape) * feature_mask

b = ((mask - 1) * alpha * a) + alpha * a * p
mask *= a

if inplace:
ivy.inplace_update(input, mask * input + b)
return input
else:
masked = mask * input + b
return masked
Original file line number Diff line number Diff line change
Expand Up @@ -238,3 +238,49 @@ def test_torch_dropout3d(
for u in ret:
# cardinality test
assert u.shape == x.shape


@handle_frontend_test(
fn_tree="torch.nn.functional.feature_alpha_dropout",
dtype_and_x=helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("float"),
min_value=0,
max_value=50,
allow_inf=False,
min_num_dims=1,
max_num_dims=1,
min_dim_size=2,
),
prob=helpers.floats(min_value=0, max_value=0.9),
training=st.booleans(),
test_inplace=st.just(False),
)
def test_torch_feature_alpha_dropout(
*,
dtype_and_x,
prob,
training,
on_device,
fn_tree,
frontend,
test_flags,
backend_fw,
):
input_dtype, x = dtype_and_x
ret = helpers.test_frontend_function(
input_dtypes=input_dtype,
backend_to_test=backend_fw,
frontend=frontend,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
input=x[0],
p=prob,
training=training,
test_values=False,
)
ret = helpers.flatten_and_to_np(ret=ret, backend=backend_fw)
x = np.asarray(x[0], input_dtype[0])
for u in ret:
# cardinality test
assert u.shape == x.shape
Loading