Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Task 52 #90

Merged
merged 19 commits into from
Jul 30, 2024
82 changes: 31 additions & 51 deletions Carleson/DiscreteCarleson.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import Carleson.Forest
import Carleson.HardyLittlewood
import Carleson.ToMathlib.Height
-- import Carleson.Proposition2
-- import Carleson.Proposition3

Expand All @@ -8,7 +9,6 @@ open scoped ENNReal
open Classical -- We use quite some `Finset.filter`
noncomputable section


open scoped ShortVariables
variable {X : Type*} {a : ℕ} {q : ℝ} {K : X → X → ℂ} {σ₁ σ₂ : X → ℤ} {F G : Set X}
[MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q D κ S o]
Expand Down Expand Up @@ -79,44 +79,26 @@ def 𝔏₀ (k n : ℕ) : Set (𝔓 X) :=
/-- `𝔏₁(k, n, j, l)` consists of the minimal elements in `ℭ₁(k, n, j)` not in
`𝔏₁(k, n, j, l')` for some `l' < l`. Defined near (5.1.11). -/
def 𝔏₁ (k n j l : ℕ) : Set (𝔓 X) :=
minimals (·≤·) (ℭ₁ k n j \ ⋃ (l' < l), 𝔏₁ k n j l')
(ℭ₁ k n j).with_height l

lemma 𝔏₁_disjoint {k n j l l' : ℕ} (h : l ≠ l') : Disjoint (𝔏₁ (X := X) k n j l) (𝔏₁ k n j l') := by
wlog hl : l < l'; · exact (this h.symm (by omega)).symm
rw [disjoint_right]; intro p hp
rw [𝔏₁, mem_minimals_iff, mem_diff] at hp; replace hp := hp.1.2; contrapose! hp
refine mem_iUnion₂_of_mem hl hp
lemma 𝔏₁_disjoint {k n j l l' : ℕ} (h : l ≠ l') : Disjoint (𝔏₁ (X := X) k n j l) (𝔏₁ k n j l') :=
Set.Disjoint_with_height _ h

lemma exists_le_of_mem_𝔏₁ {k n j l : ℕ} {p : 𝔓 X} (hp : p ∈ 𝔏₁ k n j l) :
∃ p' ∈ ℭ₁ k n j, p' ≤ p ∧ 𝔰 p' + l ≤ 𝔰 p := by
induction l generalizing p with
| zero =>
rw [𝔏₁] at hp; simp_rw [not_lt_zero', iUnion_of_empty, iUnion_empty, diff_empty] at hp
use p, hp.1; simp
| succ l ih =>
have np : p ∉ 𝔏₁ k n j l := disjoint_right.mp (𝔏₁_disjoint (by omega)) hp
rw [𝔏₁, mem_minimals_iff] at hp np
have rl : p ∈ ℭ₁ k n j \ ⋃ (l' < l), 𝔏₁ k n j l' := by
refine mem_of_mem_of_subset hp.1 (diff_subset_diff_right ?_)
refine biUnion_subset_biUnion_left fun k hk ↦ ?_
rw [mem_def, Nat.le_eq] at hk ⊢; omega
simp_rw [rl, true_and] at np; push_neg at np; obtain ⟨p', hp', lp⟩ := np
have mp' : p' ∈ 𝔏₁ k n j l := by
by_contra h
have cp : p' ∈ ℭ₁ k n j \ ⋃ (l' < l + 1), 𝔏₁ k n j l' := by
have : ∀ l', l' < l + 1 ↔ l' < l ∨ l' = l := by omega
simp_rw [this, iUnion_or, iUnion_union_distrib]
simp only [iUnion_iUnion_eq_left, mem_diff, mem_union, mem_iUnion, exists_prop, not_or,
not_exists, not_and] at hp' ⊢
tauto
exact absurd (hp.2 cp lp.1) (ne_eq _ _ ▸ lp.2)
obtain ⟨d, md, ld, sd⟩ := ih mp'; use d, md, (ld.trans lp.1)
rw [Nat.cast_add, Nat.cast_one, ← add_assoc]
have 𝓘lt : 𝓘 p' < 𝓘 p := by
refine lt_of_le_of_ne lp.1.1 (not_lt_of_𝓘_eq_𝓘.mt ?_)
rw [not_not]; exact lt_of_le_of_ne lp.1 lp.2.symm
have 𝔰lt : 𝔰 p' < 𝔰 p := by rw [Grid.lt_def] at 𝓘lt; exact 𝓘lt.2
omega
obtain ⟨p, rfl, rfl⟩ := Set.exists_series_of_mem_with_height hp
use p.head
simp only [defaultA, defaultD, defaultκ, Subtype.coe_prop, Subtype.coe_le_coe, true_and]
constructor
· apply LTSeries.head_le_last
· let p' := p.map (β := ℤ) (fun (x : ℭ₁ k n j) => 𝔰 x.1) ?mono
exact LTSeries.int_head_add_len_le_last p'
case mono =>
show StrictMono (fun (x : ℭ₁ k n j) => 𝔰 x.1)
intro ⟨p',hp'⟩ ⟨p, hp⟩ hp'p
simp only [defaultA, defaultD, defaultκ, Subtype.mk_lt_mk] at hp'p
have 𝓘lt : 𝓘 p' < 𝓘 p := 𝓘_strict_mono hp'p
rw [Grid.lt_def] at 𝓘lt; exact 𝓘lt.2

/-- The subset `ℭ₂(k, n, j)` of `ℭ₁(k, n, j)`, given in (5.1.13). -/
def ℭ₂ (k n j : ℕ) : Set (𝔓 X) :=
Expand Down Expand Up @@ -145,7 +127,7 @@ lemma exists_le_of_mem_ℭ₂ {k n j : ℕ} {p : 𝔓 X} (hp : p ∈ ℭ₂ k n
not_and, mem_toFinset] at mp' maxp'
conv at maxp' => enter [x]; rw [and_imp]
have mp'₁ : p' ∈ 𝔏₁ k n j (Z * (n + 1)) := by
rw [𝔏₁, mem_minimals_iff]
rw [𝔏₁, Set.with_height, mem_minimals_iff]
simp_rw [mem_diff, mem_iUnion, exists_prop, not_exists, not_and]
exact ⟨mp'.1, fun y hy ly ↦ (eq_of_le_of_not_lt ly (maxp' y hy (ly.trans mp'.2))).symm⟩
obtain ⟨po, mpo, lpo, spo⟩ := exists_le_of_mem_𝔏₁ mp'₁
Expand All @@ -171,7 +153,7 @@ lemma ℭ₃_subset_ℭ₂ {k n j : ℕ} : ℭ₃ k n j ⊆ ℭ₂ (X := X) k n
/-- `𝔏₃(k, n, j, l)` consists of the maximal elements in `ℭ₃(k, n, j)` not in
`𝔏₃(k, n, j, l')` for some `l' < l`. Defined near (5.1.17). -/
def 𝔏₃ (k n j l : ℕ) : Set (𝔓 X) :=
maximals (·≤·) (ℭ₃ k n j \ ⋃ (l' < l), 𝔏₃ k n j l')
(ℭ₃ k n j).with_coheight l

/-- The subset `ℭ₄(k, n, j)` of `ℭ₃(k, n, j)`, given in (5.1.19). -/
def ℭ₄ (k n j : ℕ) : Set (𝔓 X) :=
Expand Down Expand Up @@ -964,7 +946,7 @@ lemma ordConnected_C2 : OrdConnected (ℭ₂ k n j : Set (𝔓 X)) := by
by_cases e : p = p'; · rwa [e] at mp
simp_rw [ℭ₂, mem_diff, mp'₁, true_and]
by_contra h; rw [mem_iUnion₂] at h; obtain ⟨l', bl', p'm⟩ := h
rw [𝔏₁, mem_minimals_iff] at p'm
rw [𝔏₁, Set.with_height, mem_minimals_iff] at p'm
have pnm : p ∉ ⋃ l'', ⋃ (_ : l'' < l'), 𝔏₁ k n j l'' := by
replace mp := mp.2; contrapose! mp
exact mem_of_mem_of_subset mp
Expand Down Expand Up @@ -992,7 +974,7 @@ lemma ordConnected_C4 : OrdConnected (ℭ₄ k n j : Set (𝔓 X)) := by
by_cases e : p' = p''; · rwa [← e] at mp''
simp_rw [ℭ₄, mem_diff, mp'₁, true_and]
by_contra h; simp_rw [mem_iUnion] at h; obtain ⟨l', hl', p'm⟩ := h
rw [𝔏₃, mem_maximals_iff] at p'm; simp_rw [mem_diff] at p'm
rw [𝔏₃, Set.with_coheight, mem_maximals_iff] at p'm; simp_rw [mem_diff] at p'm
have p''nm : p'' ∉ ⋃ l'', ⋃ (_ : l'' < l'), 𝔏₃ k n j l'' := by
replace mp'' := mp''.2; contrapose! mp''
refine mem_of_mem_of_subset mp'' <| iUnion₂_mono' fun i hi ↦ ⟨i, hi.le.trans hl', subset_rfl⟩
Expand Down Expand Up @@ -1479,37 +1461,35 @@ lemma antichain_decomposition : 𝔓pos (X := X) ∩ 𝔓₁ᶜ = ℜ₀ ∪ ℜ

/-- The subset `𝔏₀(k, n, l)` of `𝔏₀(k, n)`, given in Lemma 5.5.3.
We use the name `𝔏₀'` in Lean. The indexing is off-by-one w.r.t. the blueprint -/
-- Note: this is basically the same construction as `𝔏₁`.
-- Please generalize this construction and prove properties
-- (antichainness, union, the fact that it stops after `n`
-- steps if there are no antichains of length `n + 1`)
-- in proper generality.
def 𝔏₀' (k n l : ℕ) : Set (𝔓 X) :=
minimals (·≤·) (𝔏₀ k n \ ⋃ (l' < l), 𝔏₀' k n l')
def 𝔏₀' (k n l : ℕ) : Set (𝔓 X) := (𝔏₀ k n).with_height l

/-- Part of Lemma 5.5.2 -/
lemma L0_has_bounded_series (p : LTSeries (𝔏₀ (X := X) k n)) : p.length ≤ n := sorry


/-- Part of Lemma 5.5.2 -/
lemma iUnion_L0' : ⋃ (l ≤ n), 𝔏₀' (X := X) k n l = 𝔏₀ k n :=
sorry
Set.iUnion_with_height_of_bounded_series L0_has_bounded_series

/-- Part of Lemma 5.5.2 -/
lemma pairwiseDisjoint_L0' : univ.PairwiseDisjoint (𝔏₀' (X := X) k n) :=
sorry
Set.PairwiseDisjoint_with_height _

/-- Part of Lemma 5.5.2 -/
lemma antichain_L0' : IsAntichain (·≤·) (𝔏₀' (X := X) k n l) :=
sorry
Set.IsAntichain_with_height _ _

/-- Lemma 5.5.3 -/
lemma antichain_L2 : IsAntichain (·≤·) (𝔏₂ (X := X) k n j) :=
sorry

/-- Part of Lemma 5.5.4 -/
lemma antichain_L1 : IsAntichain (·≤·) (𝔏₁ (X := X) k n j l) :=
sorry
Set.IsAntichain_with_height _ _

/-- Part of Lemma 5.5.4 -/
lemma antichain_L3 : IsAntichain (·≤·) (𝔏₃ (X := X) k n j l) :=
sorry
Set.IsAntichain_with_coheight _ _

/-- The constant used in Lemma 5.1.3, with value `2 ^ (210 * a ^ 3) / (q - 1) ^ 5` -/
-- todo: redefine in terms of other constants
Expand Down
9 changes: 9 additions & 0 deletions Carleson/TileStructure.lean
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,15 @@ lemma eq_of_𝓘_eq_𝓘_of_le (h1 : 𝓘 p = 𝓘 p') (h2 : p ≤ p') : p = p'
lemma not_lt_of_𝓘_eq_𝓘 (h1 : 𝓘 p = 𝓘 p') : ¬ p < p' :=
fun h2 ↦ h2.ne <| eq_of_𝓘_eq_𝓘_of_le h1 h2.le

-- TODO: Clean up this lemma and the two above, it seems strict monotonicty is the basic idea
lemma 𝓘_strict_mono : StrictMono (𝓘 (X := X)) := by
intro p p' h
apply lt_of_le_of_ne
· exact (𝔓.le_def'.mp (le_of_lt h)).left
· intro h'
have := not_lt_of_𝓘_eq_𝓘 h'
contradiction

/-- Lemma 5.3.1 -/
lemma smul_mono {m m' n n' : ℝ} (hp : smul n p ≤ smul m p') (hm : m' ≤ m) (hn : n ≤ n') :
smul n' p ≤ smul m' p' :=
Expand Down
Loading