Skip to content

Commit

Permalink
use the global variables in the antichain operator file
Browse files Browse the repository at this point in the history
  • Loading branch information
fpvandoorn committed Jun 20, 2024
1 parent 69d457e commit 6c90b6e
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 11 deletions.
22 changes: 11 additions & 11 deletions Carleson/AntichainOperator.lean
Original file line number Diff line number Diff line change
Expand Up @@ -60,32 +60,32 @@ lemma _root_.Set.eq_indicator_one_mul {F : Set X} {f : X → ℂ} (hf : ∀ x,

open MeasureTheory

noncomputable def C_6_1_3 (a : ℝ) (q : ℝ≥0) : ℝ≥0 := 2^(111*a^3)*(q-1)⁻¹
noncomputable def C_6_1_3 (a : ℝ) (q : ℝ≥0) : ℝ≥0 := 2 ^ (111 * a ^ 3) * (q - 1)⁻¹

-- lemma 6.1.3
lemma Dens2Antichain {a : ℝ} (ha : 4 ≤ a) {q : ℝ≥0} (hq1 : 1 < q) (hq2 : q ≤ 2) {𝔄 : Finset (𝔓 X)}
(h𝔄 : IsAntichain (·≤·) (𝔄 : Set (𝔓 X))) {F : Set X} {f : X → ℂ}
(hf : ∀ x, ‖f x‖ ≤ F.indicator 1 x) {G : Set X} {g : X → ℂ} (hg : ∀ x, ‖g x‖ ≤ G.indicator 1 x)
lemma Dens2Antichain {𝔄 : Finset (𝔓 X)}
(h𝔄 : IsAntichain (·≤·) (𝔄 : Set (𝔓 X))) {f : X → ℂ}
(hf : ∀ x, ‖f x‖ ≤ F.indicator 1 x) {g : X → ℂ} (hg : ∀ x, ‖g x‖ ≤ G.indicator 1 x)
(x : X) :
‖∫ x, ((starRingEnd ℂ) (g x)) * ∑ (p ∈ 𝔄), T p f x‖₊ ≤
(C_6_1_3 a q) * (dens₂ (𝔄 : Set (𝔓 X))) * (snorm f 2 volume) * (snorm f 2 volume) := by
(C_6_1_3 a nnq) * (dens₂ (𝔄 : Set (𝔓 X))) * (snorm f 2 volume) * (snorm f 2 volume) := by
have hf1 : f = (F.indicator 1) * f := eq_indicator_one_mul hf
set q' := 2*q/(1 + q) with hq'
have hq0 : 0 < q := lt_trans zero_lt_one hq1
set q' := 2*nnq/(1 + nnq) with hq'
have hq0 : 0 < nnq := nnq_pos X
have h1q' : 1 ≤ q' := by -- Better proof?
rw [hq', one_le_div (add_pos_iff.mpr (Or.inl zero_lt_one)), two_mul, add_le_add_iff_right]
exact le_of_lt hq1
have hqq' : q' ≤ q := by -- Better proof?
exact le_of_lt (q_mem_Ioc X).1
have hqq' : q' ≤ nnq := by -- Better proof?
rw [hq', div_le_iff (add_pos (zero_lt_one) hq0), mul_comm, mul_le_mul_iff_of_pos_left hq0,
← one_add_one_eq_two, add_le_add_iff_left]
exact le_of_lt hq1
exact (nnq_mem_Ioc X).1.le
sorry

/-- Constant appearing in Proposition 2.0.3. -/
def C_2_0_3 (a q : ℝ) : ℝ := 2 ^ (150 * a ^ 3) / (q - 1)

/-- Proposition 2.0.3 -/
theorem antichain_operator {𝔄 : Set (𝔓 X)} {f g : X → ℂ} {q : ℝ}
theorem antichain_operator {𝔄 : Set (𝔓 X)} {f g : X → ℂ}
(hf : ∀ x, ‖f x‖ ≤ F.indicator 1 x)
(hg : ∀ x, ‖g x‖ ≤ G.indicator 1 x)
(h𝔄 : IsAntichain (·≤·) (toTileLike (X := X) '' 𝔄)) :
Expand Down
5 changes: 5 additions & 0 deletions Carleson/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -308,6 +308,10 @@ variable (X) in
/-- `q` as an element of `ℝ≥0`. -/
def nnq : ℝ≥0 := ⟨q, q_nonneg X⟩

variable (X) in lemma nnq_pos : 0 < nnq X := q_pos X
variable (X) in lemma nnq_mem_Ioc : nnq X ∈ Ioc 1 2 :=
⟨NNReal.coe_lt_coe.mp (q_mem_Ioc X).1, NNReal.coe_le_coe.mp (q_mem_Ioc X).2

end ProofData

class ProofData {X : Type*} (a q : outParam ℝ) (K : outParam (X → X → ℂ))
Expand All @@ -327,6 +331,7 @@ scoped notation "Z" => defaultZ a
scoped notation "τ" => defaultτ a
scoped notation "o" => cancelPt X
scoped notation "S" => S X
scoped notation "nnq" => nnq X

end ShortVariables

Expand Down

0 comments on commit 6c90b6e

Please sign in to comment.