-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
08ff76b
commit 69d457e
Showing
2 changed files
with
82 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import Mathlib.Analysis.NormedSpace.FiniteDimension | ||
import Mathlib.Analysis.SpecialFunctions.Log.Base | ||
import Mathlib.MeasureTheory.Integral.Average | ||
import Mathlib.MeasureTheory.Measure.Haar.Basic | ||
import Mathlib.MeasureTheory.Measure.Doubling | ||
import Mathlib.MeasureTheory.Covering.VitaliFamily | ||
|
||
open MeasureTheory Metric Bornology Set | ||
open scoped NNReal ENNReal | ||
noncomputable section | ||
|
||
#check VitaliFamily | ||
|
||
variable {X E} [PseudoMetricSpace X] [MeasurableSpace X] [NormedAddCommGroup E] [NormedSpace ℝ E] | ||
[MeasurableSpace E] [BorelSpace E] | ||
{μ : Measure X} {f : X → E} {x : X} {𝓑 : Finset (X × ℝ)} | ||
|
||
/-- The Hardy-Littlewood maximal function w.r.t. a collection of balls 𝓑. -/ | ||
def maximalFunction (μ : Measure X) (𝓑 : Set (X × ℝ)) (p : ℝ) (u : X → E) (x : X) : ℝ≥0∞ := | ||
(⨆ z ∈ 𝓑, (ball z.1 z.2).indicator (x := x) | ||
fun _ ↦ ⨍⁻ y, ‖u y‖₊ ∂μ.restrict (ball z.1 z.2)) ^ p⁻¹ | ||
|
||
-- old | ||
-- /-- Hardy-Littlewood maximal function -/ | ||
-- def maximalFunction (μ : Measure X) (f : X → E) (x : X) : ℝ := | ||
-- ⨆ (x' : X) (δ : ℝ) (_hx : x ∈ ball x' δ), | ||
-- ⨍⁻ y, ‖f y‖₊ ∂μ.restrict (ball x' δ) |>.toReal | ||
|
||
/-! The following results probably require a doubling measure, | ||
and maybe some properties from `ProofData`. | ||
They are the statements from the blueprint. | ||
We probably want a more general version first. -/ | ||
|
||
theorem measure_biUnion_le_lintegral {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) | ||
{u : X → ℝ≥0} (hu : AEStronglyMeasurable u μ) | ||
(h2u : ∀ z ∈ 𝓑, l * μ (ball z.1 z.2) ≤ ∫⁻ x in ball z.1 z.2, u x ∂μ) | ||
: | ||
l * μ (⋃ z ∈ 𝓑, ball z.1 z.2) ≤ 2 ^ (2 * a) * ∫⁻ x, u x ∂μ := by | ||
sorry | ||
|
||
theorem maximalFunction_lt_top {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) {p₁ p₂ : ℝ≥0} | ||
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂) | ||
{u : X → E} (hu : Memℒp u p₂ μ) {x : X} : | ||
maximalFunction μ 𝓑 p₁ u x < ∞ := by | ||
sorry | ||
|
||
theorem snorm_maximalFunction {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) {p₁ p₂ : ℝ≥0} | ||
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂) | ||
{u : X → E} (hu : AEStronglyMeasurable u μ) : | ||
snorm (maximalFunction μ 𝓑 p₁ u · |>.toReal) p₂ μ ≤ | ||
2 ^ (2 * a) * p₂ / (p₂ - p₁) * snorm u p₂ μ := by | ||
sorry | ||
|
||
theorem Memℒp.maximalFunction {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) {p₁ p₂ : ℝ≥0} | ||
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂) | ||
{u : X → E} (hu : Memℒp u p₂ μ) : | ||
Memℒp (maximalFunction μ 𝓑 p₁ u · |>.toReal) p₂ μ := by | ||
sorry | ||
|
||
/-- The transformation M characterized in Proposition 2.0.6. -/ | ||
def M (u : X → ℂ) (x : X) : ℝ≥0∞ := sorry | ||
|
||
theorem M_lt_top {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) {p₁ p₂ : ℝ≥0} | ||
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂) | ||
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (hu : IsBounded (range u)) | ||
{x : X} : M u x < ∞ := by | ||
sorry | ||
|
||
theorem laverage_le_M {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) | ||
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (hu : IsBounded (range u)) | ||
{z x : X} {r : ℝ} : | ||
⨍⁻ y, ‖u y‖₊ ∂μ.restrict (ball z r) ≤ M u x := by | ||
sorry | ||
|
||
theorem snorm_M_le {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l){p₁ p₂ : ℝ≥0} | ||
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂) | ||
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (hu : IsBounded (range u)) | ||
{z x : X} {r : ℝ} : | ||
snorm (fun x ↦ (M (fun x ↦ u x ^ (p₁ : ℂ)) x).toReal ^ (p₁⁻¹ : ℝ)) p₂ μ ≤ | ||
2 ^ (4 * a) * p₂ / (p₂ - p₁) * snorm u p₂ μ := by | ||
sorry |