Skip to content

Commit

Permalink
forgot to add file
Browse files Browse the repository at this point in the history
  • Loading branch information
fpvandoorn committed Jun 20, 2024
1 parent 08ff76b commit 69d457e
Show file tree
Hide file tree
Showing 2 changed files with 82 additions and 0 deletions.
1 change: 1 addition & 0 deletions Carleson.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ import Carleson.DoublingMeasure
import Carleson.FinitaryCarleson
import Carleson.ForestOperator
import Carleson.GridStructure
import Carleson.HardyLittlewood
import Carleson.HolderVanDerCorput
import Carleson.MetricCarleson
import Carleson.Proposition2
Expand Down
81 changes: 81 additions & 0 deletions Carleson/HardyLittlewood.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import Mathlib.Analysis.NormedSpace.FiniteDimension
import Mathlib.Analysis.SpecialFunctions.Log.Base
import Mathlib.MeasureTheory.Integral.Average
import Mathlib.MeasureTheory.Measure.Haar.Basic
import Mathlib.MeasureTheory.Measure.Doubling
import Mathlib.MeasureTheory.Covering.VitaliFamily

open MeasureTheory Metric Bornology Set
open scoped NNReal ENNReal
noncomputable section

#check VitaliFamily

variable {X E} [PseudoMetricSpace X] [MeasurableSpace X] [NormedAddCommGroup E] [NormedSpace ℝ E]
[MeasurableSpace E] [BorelSpace E]
{μ : Measure X} {f : X → E} {x : X} {𝓑 : Finset (X × ℝ)}

/-- The Hardy-Littlewood maximal function w.r.t. a collection of balls 𝓑. -/
def maximalFunction (μ : Measure X) (𝓑 : Set (X × ℝ)) (p : ℝ) (u : X → E) (x : X) : ℝ≥0∞ :=
(⨆ z ∈ 𝓑, (ball z.1 z.2).indicator (x := x)
fun _ ↦ ⨍⁻ y, ‖u y‖₊ ∂μ.restrict (ball z.1 z.2)) ^ p⁻¹

-- old
-- /-- Hardy-Littlewood maximal function -/
-- def maximalFunction (μ : Measure X) (f : X → E) (x : X) : ℝ :=
-- ⨆ (x' : X) (δ : ℝ) (_hx : x ∈ ball x' δ),
-- ⨍⁻ y, ‖f y‖₊ ∂μ.restrict (ball x' δ) |>.toReal

/-! The following results probably require a doubling measure,
and maybe some properties from `ProofData`.
They are the statements from the blueprint.
We probably want a more general version first. -/

theorem measure_biUnion_le_lintegral {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l)
{u : X → ℝ≥0} (hu : AEStronglyMeasurable u μ)
(h2u : ∀ z ∈ 𝓑, l * μ (ball z.1 z.2) ≤ ∫⁻ x in ball z.1 z.2, u x ∂μ)
:
l * μ (⋃ z ∈ 𝓑, ball z.1 z.2) ≤ 2 ^ (2 * a) * ∫⁻ x, u x ∂μ := by
sorry

theorem maximalFunction_lt_top {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) {p₁ p₂ : ℝ≥0}
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → E} (hu : Memℒp u p₂ μ) {x : X} :
maximalFunction μ 𝓑 p₁ u x < ∞ := by
sorry

theorem snorm_maximalFunction {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) {p₁ p₂ : ℝ≥0}
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → E} (hu : AEStronglyMeasurable u μ) :
snorm (maximalFunction μ 𝓑 p₁ u · |>.toReal) p₂ μ ≤
2 ^ (2 * a) * p₂ / (p₂ - p₁) * snorm u p₂ μ := by
sorry

theorem Memℒp.maximalFunction {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) {p₁ p₂ : ℝ≥0}
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → E} (hu : Memℒp u p₂ μ) :
Memℒp (maximalFunction μ 𝓑 p₁ u · |>.toReal) p₂ μ := by
sorry

/-- The transformation M characterized in Proposition 2.0.6. -/
def M (u : X → ℂ) (x : X) : ℝ≥0∞ := sorry

theorem M_lt_top {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l) {p₁ p₂ : ℝ≥0}
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (hu : IsBounded (range u))
{x : X} : M u x < ∞ := by
sorry

theorem laverage_le_M {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l)
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (hu : IsBounded (range u))
{z x : X} {r : ℝ} :
⨍⁻ y, ‖u y‖₊ ∂μ.restrict (ball z r) ≤ M u x := by
sorry

theorem snorm_M_le {a : ℝ} (ha : 4 ≤ a) {l : ℝ≥0} (hl : 0 < l){p₁ p₂ : ℝ≥0}
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (hu : IsBounded (range u))
{z x : X} {r : ℝ} :
snorm (fun x ↦ (M (fun x ↦ u x ^ (p₁ : ℂ)) x).toReal ^ (p₁⁻¹ : ℝ)) p₂ μ ≤
2 ^ (4 * a) * p₂ / (p₂ - p₁) * snorm u p₂ μ := by
sorry

0 comments on commit 69d457e

Please sign in to comment.