Skip to content

Commit

Permalink
start on updating to new blueprint
Browse files Browse the repository at this point in the history
  • Loading branch information
fpvandoorn committed Apr 17, 2024
1 parent 1372c60 commit 593052e
Show file tree
Hide file tree
Showing 6 changed files with 58 additions and 87 deletions.
86 changes: 32 additions & 54 deletions Carleson/Carleson.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,11 @@ import Carleson.Proposition1
open MeasureTheory Measure NNReal Metric Complex Set Function BigOperators
open scoped ENNReal
noncomputable section
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220

/- The constant used in theorem1_1 -/
def C1_1 (A : ℝ) (τ q : ℝ) : ℝ := sorry
/- The constant used in theorem1_2 -/
def C1_2 (a q : ℝ) : ℝ := 2 ^ (270 * a ^ 3) / (q - 1) ^ 5

lemma C1_1_pos (A : ℝ) (τ q : ℝ) : C1_1 A τ q > 0 := sorry
lemma C1_1_pos (a q : ℝ) (ha : 4 ≤ a) (hq : q ∈ Ioc 1 2) : C1_2 a q > 0 := sorry

/- The constant used in equation (2.2) -/
def Ce2_2 (A : ℝ) (τ q : ℝ) : ℝ := sorry
Expand All @@ -20,13 +19,13 @@ def Ce3_1 (A : ℝ) (τ q : ℝ) : ℝ := sorry

lemma Ce3_1_pos (A : ℝ) (τ q : ℝ) : Ce3_1 A τ q > 0 := sorry

section
section -- todo: old code

variable {X : Type*} {A : ℝ} [MetricSpace X] [IsSpaceOfHomogeneousType X A] [Inhabited X]
variable {X : Type*} {a : ℝ} [MetricSpace X] [IsSpaceOfHomogeneousType X a] [Inhabited X]
variable {τ q q' : ℝ} {C : ℝ}
variable {𝓠 : Set C(X, ℂ)} [IsCompatible 𝓠] [IsCancellative τ 𝓠]
variable {Θ : Set C(X, ℂ)} [IsCompatible Θ] [IsCancellative a Θ]
variable {F G : Set X}
variable (K : X → X → ℂ) [IsCZKernel τ K]
variable (K : X → X → ℂ) [IsCZKernel a K]

def D1_1 (A : ℝ) (τ q : ℝ) : ℝ := sorry

Expand All @@ -38,7 +37,7 @@ def Cψ1_1 (A : ℝ) (τ q : ℝ) : ℝ≥0 := sorry

lemma Cψ1_1_pos (A : ℝ) (τ : ℝ) : Cψ2_1 A τ C > 0 := sorry

/- extra variables not in theorem 1.1. -/
/- extra variables not in theorem 1.2. -/
variable {D : ℝ} {ψ : ℝ → ℝ} {s : ℤ} {x y : X}

/- the one or two numbers `s` where `ψ (D ^ s * x)` is possibly nonzero -/
Expand All @@ -47,20 +46,18 @@ variable (D) in def nonzeroS (x : ℝ) : Finset ℤ :=


variable
(hD : D > D1_1 A τ q)
(hψ : LipschitzWith (Cψ1_1 A τ q) ψ)
(hD : D > D1_1 a τ q)
(hψ : LipschitzWith (Cψ1_1 a τ q) ψ)
(h2ψ : support ψ = Ioo (4 * D)⁻¹ 2⁻¹)
(h3ψ : ∀ x > 0, ∑ s in nonzeroS D x, ψ (D ^ s * x) = 1)

-- move
theorem Int.floor_le_iff (a : ℝ) (z : ℤ) : ⌊a⌋ ≤ z ↔ a < z + 1 := by
theorem Int.floor_le_iff (c : ℝ) (z : ℤ) : ⌊c⌋ ≤ z ↔ c < z + 1 := by
rw_mod_cast [← Int.floor_le_sub_one_iff, add_sub_cancel_right]

theorem Int.le_ceil_iff (a : ℝ) (z : ℤ) : z ≤ ⌈a⌉ ↔ z - 1 < a := by
theorem Int.le_ceil_iff (c : ℝ) (z : ℤ) : z ≤ ⌈c⌉ ↔ z - 1 < c := by
rw_mod_cast [← Int.add_one_le_ceil_iff, sub_add_cancel]

example (a b c : ℝ) (hc : 0 < c) : a < b / c ↔ a * c < b := by exact _root_.lt_div_iff hc

lemma mem_nonzeroS_iff {i : ℤ} {x : ℝ} (hx : 0 < x) (hD : 1 < D) :
i ∈ nonzeroS D x ↔ (D ^ i * x) ∈ Ioo (4 * D)⁻¹ 2⁻¹ := by
rw [Set.mem_Ioo, nonzeroS, Finset.mem_Icc]
Expand Down Expand Up @@ -100,13 +97,13 @@ lemma sum_Ks' {s : Finset ℤ}




-- old
/- (No need to take the supremum over the assumption `σ < σ'`.) -/
lemma equation3_1 {f : X → ℂ} (hf : LocallyIntegrable f)
(h𝓠 : ∀ Q ∈ 𝓠, ∀ x, (Q x).im = 0) :
let rhs := Ce3_1 A τ q * maximalFunction f x + ⨆ (Q ∈ 𝓠) (σ : ℤ) (σ' : ℤ),
( : ∀ Q ∈ Θ, ∀ x, (Q x).im = 0) :
let rhs := Ce3_1 a τ q * maximalFunction f x + ⨆ (Q ∈ Θ) (σ : ℤ) (σ' : ℤ),
‖∑ s in Finset.Icc σ σ', ∫ y, Ks K D ψ s x y * f y * exp (I * (Q y - Q x))‖
CarlesonOperator K 𝓠 f x ≤ rhs := by
CarlesonOperator K Θ f x ≤ rhs := by
intro rhs
have h_rhs : 0 ≤ rhs := by
sorry
Expand All @@ -118,13 +115,13 @@ lemma equation3_1 {f : X → ℂ} (hf : LocallyIntegrable f)
refine Real.iSup_le (fun hrR ↦ ?_) h_rhs
let σ : ℤ := ⌊Real.logb D (2 * r)⌋ + 1
let σ' : ℤ := ⌈Real.logb D (4 * R)⌉
trans Ce3_1 A τ q * maximalFunction f x +
trans Ce3_1 a τ q * maximalFunction f x +
‖∑ s in Finset.Icc σ σ', ∫ y, Ks K D ψ s x y * f y * exp (I * (Q y - Q x))‖
rw [← sub_le_iff_le_add]
simp_rw [mul_sub, Complex.exp_sub, mul_div, integral_div, ← Finset.sum_div,
norm_div]
have h1 : ‖cexp (I * Q x)‖ = 1 := by
lift Q x to ℝ using h𝓠 Q hQ x with qx
lift Q x to ℝ using Q hQ x with qx
simp only [mul_comm I qx, norm_exp_ofReal_mul_I]
rw [h1, div_one]
/- use h3ψ here to rewrite the RHS -/
Expand All @@ -139,12 +136,10 @@ lemma equation3_1 {f : X → ℂ} (hf : LocallyIntegrable f)
rw [h3, ← neg_sub, ← integral_univ, ← integral_diff]
all_goals sorry

/- Proof should be straightforward from the definition of maximalFunction and conditions on `𝓠`.
/- Proof should be straightforward from the definition of maximalFunction and conditions on `Θ`.
We have to approximate `Q` by an indicator function.
2^σ ≈ r, 2^σ' ≈ R
There is a small difference in integration domain, and for that we use the estimate IsCZKernel.norm_le_vol_inv
-/

variable (C F G) in
Expand All @@ -153,7 +148,7 @@ def G₀' : Set X :=
{ x : X | maximalFunction (F.indicator (1 : X → ℂ)) x > C * volume.real F / volume.real G }

/- estimation of the volume of G₀' -/
lemma volume_G₀'_pos (hC : C1_1 A τ q < C) : volume.real (G₀' C F G) ≤ volume.real G / 4 := sorry
-- lemma volume_G₀'_pos (hC : C1_2 A τ q < C) : volume.real (G₀' C F G) ≤ volume.real G / 4 := sorry

/- estimate first term (what does this mean exactly?) -/

Expand All @@ -171,47 +166,30 @@ segment. -/
/- Lemma 3.3: obtain tile structure -/

/- finish proof of equation (2.2) -/

-- old
theorem equation2_2
(hA : 1 < A) (hτ : τ ∈ Ioo 0 1) (hq : q ∈ Ioc 1 2) (hqq' : q.IsConjExponent q')
(hA : 1 < a) (hτ : τ ∈ Ioo 0 1) (hq : q ∈ Ioc 1 2) (hqq' : q.IsConjExponent q')
(hF : MeasurableSet F) (hG : MeasurableSet G)
(h2F : volume F ∈ Ioo 0 ∞) (h2G : volume G ∈ Ioo 0 ∞)
(hT : NormBoundedBy (ANCZOperatorLp 2 K) 1) :
(hT : NormBoundedBy (ANCZOperatorLp 2 K) (2 ^ a ^ 3)) :
∃ G', volume G' ≤ volume G / 2
‖∫ x in G \ G', CarlesonOperator K 𝓠 (indicator F 1) x‖₊ ≤
Ce2_2 A τ q * (volume.real G) ^ (1 / q') * (volume.real F) ^ (1 / q) := by
‖∫ x in G \ G', CarlesonOperator K Θ (indicator F 1) x‖₊ ≤
Ce2_2 a τ q * (volume.real G) ^ (1 / q') * (volume.real F) ^ (1 / q) := by
sorry

/- to prove theorem 1.1 from (2.2): bootstrapping argument, recursing over excised sets.
(section 2). -/

/- Theorem 1.1, written using constant C1_1 -/
theorem theorem1_1C
(hA : 1 < A) (hτ : τ ∈ Ioo 0 1) (hq : q ∈ Ioc 1 2) (hqq' : q.IsConjExponent q')
/- Theorem 1.2, written using constant C1_2 -/
theorem theorem1_2C
(ha : 4 ≤ a) (hq : q ∈ Ioc 1 2) (hqq' : q.IsConjExponent q')
(hF : MeasurableSet F) (hG : MeasurableSet G)
-- (h2F : volume F ∈ Ioo 0 ∞) (h2G : volume G ∈ Ioo 0 ∞)
(hT : NormBoundedBy (ANCZOperatorLp 2 K) 1) :
‖∫ x in G, CarlesonOperator K 𝓠 (indicator F 1) x‖₊ ≤
C1_1 A τ q * (volume.real G) ^ (1 / q') * (volume.real F) ^ (1 / q) := by
(hT : NormBoundedBy (ANCZOperatorLp 2 K) 1) (f : X → ℂ)
(hf : ∀ x, ‖f x‖ ≤ F.indicator 1 x) :
‖∫ x in G, CarlesonOperator K Θ f x‖ ≤
C1_2 a q * (volume.real G) ^ q'⁻¹ * (volume.real F) ^ q⁻¹ := by
sorry

/- Specialize this to get the usual version of Carleson's theorem,
by taking `X = ℝ`, `K x y := 1 / (x - y)` and `𝓠 = {linear functions}`.
-/

end

set_option linter.unusedVariables false in
/- Theorem 1.1. -/
theorem theorem1_1 {A : ℝ} (hA : 1 < A) {τ q q' : ℝ}
(hτ : τ ∈ Ioo 0 1) (hq : q ∈ Ioc 1 2) (hqq' : q.IsConjExponent q') : ∃ (C : ℝ), C > 0
∀ {X : Type*} [MetricSpace X] [IsSpaceOfHomogeneousType X A] [Inhabited X]
(𝓠 : Set C(X, ℂ)) [IsCompatible 𝓠] [IsCancellative τ 𝓠]
(K : X → X → ℂ) [IsCZKernel τ K]
(hT : NormBoundedBy (ANCZOperatorLp 2 K) 1)
{F G : Set X} (hF : MeasurableSet F) (hG : MeasurableSet G),
‖∫ x in G, CarlesonOperator K 𝓠 (indicator F 1) x‖₊ ≤
C * (volume.real G) ^ (1 / q') * (volume.real F) ^ (1 / q) := by
use C1_1 A τ q, C1_1_pos A τ q
intros X _ _ 𝓠 _ _ _ K _ hT F G hF hG
exact theorem1_1C K hA hτ hq hqq' hF hG hT
42 changes: 20 additions & 22 deletions Carleson/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,6 @@ noncomputable section
/-! Miscellaneous definitions.
We should move them to separate files once we start proving things about them. -/

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220

variable {X : Type*} {A : ℝ} [PseudoMetricSpace X] [IsSpaceOfHomogeneousType X A]

section localOscillation
Expand Down Expand Up @@ -66,38 +64,38 @@ lemma fact_isCompact_ball (x : X) (r : ℝ) : Fact (IsBounded (ball x r)) :=
⟨isBounded_ball⟩
attribute [local instance] fact_isCompact_ball

/-- A set `𝓠` of (continuous) functions is compatible. -/
class IsCompatible [IsSpaceOfHomogeneousType X A] (𝓠 : Set C(X, ℂ)) : Prop where
localOscillation_two_mul_le {x₁ x₂ : X} {r : ℝ} {f g : C(X, ℂ)} (hf : f ∈ 𝓠) (hg : g ∈ 𝓠)
/-- A set `Θ` of (continuous) functions is compatible. -/
class IsCompatible [IsSpaceOfHomogeneousType X A] (Θ : Set C(X, ℂ)) : Prop where
localOscillation_two_mul_le {x₁ x₂ : X} {r : ℝ} {f g : C(X, ℂ)} (hf : f ∈ Θ) (hg : g ∈ Θ)
(h : dist x₁ x₂ < 2 * r) :
localOscillation (ball x₂ (2 * r)) f g ≤ A * localOscillation (ball x₁ r) f g
localOscillation_le_of_subset {x₁ x₂ : X} {r : ℝ} {f g : C(X, ℂ)} (hf : f ∈ 𝓠) (hg : g ∈ 𝓠)
localOscillation_le_of_subset {x₁ x₂ : X} {r : ℝ} {f g : C(X, ℂ)} (hf : f ∈ Θ) (hg : g ∈ Θ)
(h1 : ball x₁ r ⊆ ball x₂ (A * r)) (h2 : A * r ≤ Metric.diam (univ : Set X)) :
2 * localOscillation (ball x₁ r) f g ≤ localOscillation (ball x₂ (A * r)) f g
ballsCoverBalls {x : X} {r R : ℝ} :
∀ f : withLocalOscillation (ball x r), f ∈ 𝓠 → CoveredByBalls (ball f (2 * R) ∩ 𝓠) ⌊A⌋₊ R
∀ f : withLocalOscillation (ball x r), f ∈ Θ → CoveredByBalls (ball f (2 * R) ∩ Θ) ⌊A⌋₊ R

export IsCompatible (localOscillation_two_mul_le localOscillation_le_of_subset ballsCoverBalls)

-- todo
lemma IsCompatible.IsSeparable (hA : 1 ≤ A) {𝓠 : Set C(X, ℂ)} [IsCompatible 𝓠] : IsSeparable 𝓠 :=
lemma IsCompatible.IsSeparable (hA : 1 ≤ A) {Θ : Set C(X, ℂ)} [IsCompatible Θ] : IsSeparable Θ :=
sorry

set_option linter.unusedVariables false in
/-- The inhomogeneous Lipschitz norm on a ball. -/
def iLipNorm (ϕ : X → ℂ) (x₀ : X) (R : ℝ) : ℝ :=
(⨆ x ∈ ball x₀ R, ‖ϕ x‖) + R * ⨆ (x : X) (y : X) (h : x ≠ y), ‖ϕ x - ϕ y‖ / nndist x y

/-- 𝓠 is τ-cancellative -/
class IsCancellative (τ : ℝ) (𝓠 : Set C(X, ℂ)) : Prop where
/-- Θ is τ-cancellative -/
class IsCancellative (τ : ℝ) (Θ : Set C(X, ℂ)) : Prop where
norm_integral_exp_le {x : X} {r : ℝ} {ϕ : X → ℂ} {K : ℝ≥0} (h1 : LipschitzWith K ϕ)
(h2 : tsupport ϕ ⊆ ball x r) {f g : C(X, ℂ)} (hf : f ∈ 𝓠) (hg : g ∈ 𝓠) :
(h2 : tsupport ϕ ⊆ ball x r) {f g : C(X, ℂ)} (hf : f ∈ Θ) (hg : g ∈ Θ) :
‖∫ x in ball x r, exp (I * (f x - g x)) * ϕ x‖ ≤
A * volume.real (ball x r) * iLipNorm ϕ x r * (1 + localOscillation (ball x r) f g) ^ (- τ)

export IsCancellative (norm_integral_exp_le)

/-- The "volume function". Note that we will need to assume
/-- The "volume function" `V`. Note that we will need to assume
`IsFiniteMeasureOnCompacts` and `ProperSpace` to actually know that this volume is finite. -/
def Real.vol {X : Type*} [PseudoMetricSpace X] [MeasureSpace X] (x y : X) : ℝ :=
volume.real (ball x (dist x y))
Expand All @@ -108,10 +106,10 @@ open Function
/-- `K` is a one-sided `τ`-Calderon-Zygmund kernel
In the formalization `K x y` is defined everywhere, even for `x = y`. The assumptions on `K` show
that `K x x = 0`. -/
class IsCZKernel (τ : ℝ) (K : X → X → ℂ) : Prop where
norm_le_vol_inv (x y : X) : ‖K x y‖ ≤ (vol x y)⁻¹
class IsCZKernel (a : ℝ) (K : X → X → ℂ) : Prop where
norm_le_vol_inv (x y : X) : ‖K x y‖ ≤ 2 ^ a ^ 3 / vol x y
norm_sub_le {x y y' : X} (h : 2 * A * dist y y' ≤ dist x y) :
‖K x y - K x y'‖ ≤ (dist y y' / dist x y) ^ τ * (vol x y)⁻¹
‖K x y - K x y'‖ ≤ (dist y y' / dist x y) ^ a⁻¹ * (2 ^ a ^ 3 / vol x y)
measurable_right (y : X) : Measurable (K · y)
-- either we should assume this or prove from the other conditions
measurable : Measurable (uncurry K)
Expand Down Expand Up @@ -151,8 +149,8 @@ def ANCZOperatorLp (p : ℝ≥0∞) [Fact (1 ≤ p)] (K : X → X → ℂ) (f :

set_option linter.unusedVariables false in
/-- The (maximally truncated) polynomial Carleson operator `T`. -/
def CarlesonOperator (K : X → X → ℂ) (𝓠 : Set C(X, ℂ)) (f : X → ℂ) (x : X) : ℝ :=
⨆ (Q ∈ 𝓠) (R₁ : ℝ) (R₂ : ℝ) (h1 : R₁ < R₂),
def CarlesonOperator (K : X → X → ℂ) (Θ : Set C(X, ℂ)) (f : X → ℂ) (x : X) : ℝ :=
⨆ (Q ∈ Θ) (R₁ : ℝ) (R₂ : ℝ) (h1 : R₁ < R₂),
‖∫ y in {y | dist x y ∈ Ioo R₁ R₂}, K x y * f y * exp (I * Q y)‖

variable (X) in
Expand Down Expand Up @@ -202,25 +200,25 @@ instance homogeneousMeasurableSpace [Inhabited X] : MeasurableSpace C(X, ℂ) :=
@borel C(X, ℂ) t

/-- A tile structure. Note: compose `𝓘` with `𝓓` to get the `𝓘` of the paper. -/
class TileStructure.{u} [Inhabited X] (𝓠 : outParam (Set C(X, ℂ)))
class TileStructure.{u} [Inhabited X] (Θ : outParam (Set C(X, ℂ)))
(D κ : outParam ℝ) (C : outParam ℝ) extends GridStructure X κ D C where
protected 𝔓 : Type u
protected 𝓘 : 𝔓 → ι
Ω : 𝔓 → Set C(X, ℂ)
measurableSet_Ω : ∀ p, MeasurableSet (Ω p)
Q : 𝔓 → C(X, ℂ)
Q_mem : ∀ p, Q p ∈ 𝓠
union_Ω {i} : ⋃ (p) (_h : 𝓓 (𝓘 p) = 𝓓 i), Ω p = 𝓠
Q_mem : ∀ p, Q p ∈ Θ
union_Ω {i} : ⋃ (p) (_h : 𝓓 (𝓘 p) = 𝓓 i), Ω p = Θ
disjoint_Ω {p p'} (h : p ≠ p') (hp : 𝓓 (𝓘 p) = 𝓓 (𝓘 p')) : Disjoint (Ω p) (Ω p')
relative_fundamental_dyadic {p p'} (h : 𝓓 (𝓘 p) ⊆ 𝓓 (𝓘 p')) : Disjoint (Ω p) (Ω p') ∨ Ω p' ⊆ Ω p
localOscillationBall_subset {p} : localOscillationBall (𝓓 (𝓘 p)) (Q p) 5⁻¹ ∩ 𝓠 ⊆ Ω p
localOscillationBall_subset {p} : localOscillationBall (𝓓 (𝓘 p)) (Q p) 5⁻¹ ∩ Θ ⊆ Ω p
subset_localOscillationBall {p} : Ω p ⊆ localOscillationBall (𝓓 (𝓘 p)) (Q p) 1

export TileStructure (Ω measurableSet_Ω Q Q_mem union_Ω disjoint_Ω
relative_fundamental_dyadic localOscillationBall_subset subset_localOscillationBall)
-- #print homogeneousMeasurableSpace
-- #print TileStructure
variable [Inhabited X] {𝓠 : Set C(X, ℂ)} [TileStructure 𝓠 D κ C]
variable [Inhabited X] {Θ : Set C(X, ℂ)} [TileStructure Θ D κ C]

variable (X) in
def 𝔓 := TileStructure.𝔓 X A
Expand Down
2 changes: 0 additions & 2 deletions Carleson/HomogeneousType.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,6 @@ import Mathlib.Analysis.SpecialFunctions.Log.Base
open MeasureTheory Measure NNReal ENNReal Metric Filter Topology TopologicalSpace
noncomputable section

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220

/-! Question(F): should a space of homogeneous type extend `PseudoMetricSpace` or
`MetricSpace`? -/

Expand Down
5 changes: 2 additions & 3 deletions Carleson/Proposition1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@ import Carleson.Proposition3
open MeasureTheory Measure NNReal Metric Complex Set Function BigOperators
open scoped ENNReal
noncomputable section
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220

/- The constant used in proposition2_1 -/
def C2_1 (A : ℝ) (τ q : ℝ) (C : ℝ) : ℝ := sorry
Expand All @@ -26,7 +25,7 @@ lemma Cψ2_1_pos (A : ℝ) (τ : ℝ) (C : ℝ) : Cψ2_1 A τ C > 0 := sorry

variable {X : Type*} {A : ℝ} [MetricSpace X] [IsSpaceOfHomogeneousType X A] [Inhabited X]
variable {τ q q' D κ : ℝ} {C₀ C : ℝ}
variable {𝓠 : Set C(X, ℂ)} [IsCompatible 𝓠] [IsCancellative τ 𝓠] [TileStructure 𝓠 D κ C₀]
variable {Θ : Set C(X, ℂ)} [IsCompatible Θ] [IsCancellative τ Θ] [TileStructure Θ D κ C₀]
variable {F G : Set X} {σ σ' : X → ℤ} {Q' : X → C(X, ℂ)} /- Q-tilde in the pdf -/
variable (K : X → X → ℂ) [IsCZKernel τ K]
variable {ψ : ℝ → ℝ}
Expand All @@ -38,7 +37,7 @@ theorem prop2_1
(hκ : κ ∈ Ioo 0 (κ2_1 A τ q C₀))
(hF : MeasurableSet F) (hG : MeasurableSet G)
(h2F : volume F ∈ Ioo 0 ∞) (h2G : volume G ∈ Ioo 0 ∞)
(Q'_mem : ∀ x, Q' x ∈ 𝓠) (m_Q' : Measurable Q')
(Q'_mem : ∀ x, Q' x ∈ Θ) (m_Q' : Measurable Q')
(m_σ : Measurable σ) (m_σ' : Measurable σ')
(hT : NormBoundedBy (ANCZOperatorLp 2 K) 1)
(hψ : LipschitzWith (Cψ2_1 A τ q C₀) ψ)
Expand Down
5 changes: 2 additions & 3 deletions Carleson/Proposition2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ import Carleson.Defs
open MeasureTheory Measure NNReal Metric Complex Set Function BigOperators
open scoped ENNReal
noncomputable section
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220

def C2_2 (A : ℝ) (τ q : ℝ) (C : ℝ) : ℝ := sorry

Expand All @@ -28,7 +27,7 @@ lemma Cψ2_2_pos (A : ℝ) (τ : ℝ) (C : ℝ) : Cψ2_2 A τ C > 0 := sorry

variable {X : Type*} {A : ℝ} [MetricSpace X] [IsSpaceOfHomogeneousType X A] [Inhabited X]
variable {τ q D κ ε : ℝ} {C₀ C t : ℝ}
variable {𝓠 : Set C(X, ℂ)} [IsCompatible 𝓠] [IsCancellative τ 𝓠] [TileStructure 𝓠 D κ C₀]
variable {Θ : Set C(X, ℂ)} [IsCompatible Θ] [IsCancellative τ Θ] [TileStructure Θ D κ C₀]
variable {F G : Set X} {σ σ' : X → ℤ} {Q' : X → C(X, ℂ)} /- Q-tilde in the pdf -/
variable (K : X → X → ℂ) [IsCZKernel τ K]
variable {ψ : ℝ → ℝ}
Expand All @@ -41,7 +40,7 @@ theorem prop2_2
(hε : ε ∈ Ioo 0 (ε2_2 A τ q C₀))
(hF : MeasurableSet F) (hG : MeasurableSet G)
(h2F : volume F ∈ Ioo 0 ∞) (h2G : volume G ∈ Ioo 0 ∞)
(Q'_mem : ∀ x, Q' x ∈ 𝓠) (m_Q' : Measurable Q')
(Q'_mem : ∀ x, Q' x ∈ Θ) (m_Q' : Measurable Q')
(m_σ : Measurable σ) (m_σ' : Measurable σ')
(hT : NormBoundedBy (ANCZOperatorLp 2 K) 1)
(hψ : LipschitzWith (Cψ2_2 A τ q C₀) ψ)
Expand Down
5 changes: 2 additions & 3 deletions Carleson/Proposition3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ import Carleson.Defs
open MeasureTheory Measure NNReal Metric Complex Set TileStructure Function BigOperators
open scoped ENNReal
noncomputable section
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220

def C2_3 (A : ℝ) (τ q : ℝ) (C : ℝ) : ℝ := sorry

Expand All @@ -27,7 +26,7 @@ lemma Cψ2_3_pos (A : ℝ) (τ : ℝ) (C : ℝ) : Cψ2_3 A τ C > 0 := sorry

variable {X : Type*} {A : ℝ} [MetricSpace X] [IsSpaceOfHomogeneousType X A] [Inhabited X]
variable {τ q D κ ε δ : ℝ} {C₀ C t : ℝ}
variable {𝓠 : Set C(X, ℂ)} [IsCompatible 𝓠] [IsCancellative τ 𝓠] [TileStructure 𝓠 D κ C₀]
variable {Θ : Set C(X, ℂ)} [IsCompatible Θ] [IsCancellative τ Θ] [TileStructure Θ D κ C₀]
variable {F G : Set X} {σ σ' : X → ℤ} {Q' : X → C(X, ℂ)} /- Q-tilde in the pdf -/
variable (K : X → X → ℂ) [IsCZKernel τ K]
variable {ψ : ℝ → ℝ}
Expand All @@ -42,7 +41,7 @@ theorem prop2_3
(hD : (2 * A) ^ 100 < D) -- or some other appropriate bound
(hF : MeasurableSet F) (hG : MeasurableSet G)
(h2F : volume F ∈ Ioo 0 ∞) (h2G : volume G ∈ Ioo 0 ∞)
(Q'_mem : ∀ x, Q' x ∈ 𝓠) (m_Q' : Measurable Q')
(Q'_mem : ∀ x, Q' x ∈ Θ) (m_Q' : Measurable Q')
(m_σ : Measurable σ) (m_σ' : Measurable σ')
(hT : NormBoundedBy (ANCZOperatorLp 2 K) 1)
(hψ : LipschitzWith (Cψ2_3 A τ q C₀) ψ)
Expand Down

0 comments on commit 593052e

Please sign in to comment.