Skip to content

Commit

Permalink
Fix typos in blueprint (#2)
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone authored Apr 17, 2024
1 parent 9cac484 commit 1372c60
Showing 1 changed file with 11 additions and 11 deletions.
22 changes: 11 additions & 11 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -750,7 +750,7 @@ \chapter{T. \ref{thm main 1} from finitary P.
where $\sigma_1$ is the smallest integer such that $D^{\sigma_1-2}R_2>\frac 1{4D}$ and $\sigma_2$
is the largest integer so that $D^{\sigma_2+2}R_1<\frac 12$. Here we restricted the summation index $s$
by omitting the summands with $s<\sigma_1-2$
or $s>s_2+2$ because for these summands the function $K_s$ vanishes on the domain of integration, and we have ommitted the restriction in the integral
or $s>s_2+2$ because for these summands the function $K_s$ vanishes on the domain of integration, and we have omitted the restriction in the integral
in the summands in \eqref{middles} because in theses summands the support of $K_s$ is contained in
the set described by this restriction.

Expand Down Expand Up @@ -1063,7 +1063,7 @@ \section{Proof of L.\ref{dyadiclemma}, dyadic structure}
\mu(B(y,2^{j}D^k))\le A^j \mu(B(y,D^k))\, .
\end{equation}
As $X$ is the union of the balls $B(y,2^{j}D^k)$ and $\mu$ is not zero, at least one of
the balls $B(y,2^{j}D^k)$ has positive measure und thus $B(y,D^k)$ has positive measure.
the balls $B(y,2^{j}D^k)$ has positive measure and thus $B(y,D^k)$ has positive measure.

Applying \eqref{jballs} for $j'$ the smallest integer larger than $\ln_2(8D^{2S})$, using $-S\le k\le S$
and $y\in B(o,4D^S)$ and the triangle inequality, we have
Expand Down Expand Up @@ -1299,7 +1299,7 @@ \section{Proof of L.\ref{dyadiclemma}, dyadic structure}

Assume now the case $x\notin X_k$.
By \eqref{definei3}, we have
$x\in I_2(y,k)$. Morover, for any $u<y$ in
$x\in I_2(y,k)$. Moreover, for any $u<y$ in
$Y_k$ we have $x\not\in I_3(u,k)$.
Let $u<y$. By transitivity of the order in $Y_k$, we conclude $x\not \in I_2(y,k)$.
By \eqref{defineij} and the disjointness property of Lemma \ref{firstgridlemma}, we have
Expand Down Expand Up @@ -2472,7 +2472,7 @@ \section{Proof of Lemma \ref{allgbound}, the exceptional sets}
Using $D = 2^{100a^2}$ and $a \ge 4$ and $\kappa Z \ge 1$ proves the lemma.
\end{proof}

\section{Auxilliary lemmas}
\section{Auxiliary lemmas}

Before proving Lemma \ref{subsecflemma} and Lemma \ref{subsecalemma}, we collect some useful properties of $\lesssim$.

Expand Down Expand Up @@ -3071,8 +3071,8 @@ \section{The density arguments}\label{sec TT* T*T}
\begin{proof}
Let $\fp,\fp'$ and $x$ be given.
Assume without loss of generality that $\ps(\fp)\le \ps(\fp')$.
As we have $x\in E(\fp)\subset \sc(\fp)$ and $x\in E(\fp')\subset \sc(\fp')$ by Definition \eqref{defineep}, we conclude
withfor $i=1,2$ that
As we have $x\in E(\fp)\subset \sc(\fp)$ and $x\in E(\fp')\subset \sc(\fp')$ by Definition \eqref{defineep}, we conclude
for $i=1,2$ that
$\tQ(x)\in\fc(\fp)$ and $\tQ(x)\in\fc(\fp')$. By \eqref{eq freq dyadic} we have $\fc(\fp')\subset \fc(\fp)$. By Definition
\eqref{straightorder}, we conclude $\fp\le \fp'$. As $\mathfrak{A}$ is an antichain, we conclude $\fp=\fp'$.
This proves the lemma.
Expand Down Expand Up @@ -3963,7 +3963,7 @@ \section{Proof of Lemma \ref{lem antichain 1}, the geometric estimate}
We turn to \eqref{eqanti2}.
Consider the element $\fp'\in \mathfrak{A}'$ as above
with $L\subset \sc(\fp')$ and $s(L)<s(\fp')$.
As $L\subset L'$, we conclude twith the dyadic property that $L'\subset \sc(\fp')$.
As $L\subset L'$, we conclude with the dyadic property that $L'\subset \sc(\fp')$.
By maximality of $L$, we have
$L'\not\in \mathcal{L}$.
This together with the existence of the given $\fp'\in \mathfrak{A}$
Expand Down Expand Up @@ -5971,7 +5971,7 @@ \chapter{Proof of P. \ref{prop hlm}, Besicovitch covering and Hardy Littlewood}
=2^{2a} q(q-q')^{-1}\|h\|_q\, .
\end{equation}
This proves \eqref{eq hlm} in general.
and completes the proof of Propsoition \ref{prop hlm}.
and completes the proof of Proposition \ref{prop hlm}.

\chapter{Proof of Theorem \ref{classical}}

Expand Down Expand Up @@ -6026,7 +6026,7 @@ \section{The classical Carleson theorem}
\begin{proof}
Let $F$ be any set in $\mathbb{C}$. We show that
$f_0^{-1}(F)$ is measurable. As
$Z:=\{2\pi k/K, k\in \mathbb{Z}\}$ is countable, it suffcies to show
$Z:=\{2\pi k/K, k\in \mathbb{Z}\}$ is countable, it suffices to show
that $f_0^{-1}(F)\setminus Z$ is measurable. It then
suffices to show that $f_0^{-1}(F)\setminus Z$ is open.
Let $x\in f_0^{-1}(F)\setminus Z$. There is a $k$
Expand Down Expand Up @@ -6277,7 +6277,7 @@ \section{Piecewise constant functions.}



We first compute the partial Fourier sumes for constant functions.
We first compute the partial Fourier sums for constant functions.


\begin{lemma}\label{constant}
Expand Down Expand Up @@ -6789,7 +6789,7 @@ \section{The truncated Hilbert transform}
\begin{equation}\label{eqhil15}
2^{10}\left(1+\frac{r}{|1-e^{ix}|^2}\right)\le 2^{3}r^{-1}\, .
\end{equation}
For thos $x$, the left-hand side of \eqref{eqhil17} becomes
For those $x$, the left-hand side of \eqref{eqhil17} becomes
\begin{equation}
|\frac{1}{1-e^{-ix}}-\frac{1}{1-e^{-ix'}}|\, .
\end{equation}
Expand Down

0 comments on commit 1372c60

Please sign in to comment.