OpenPCDet LiDar Object Detection Node #399
Triggered via pull request
February 23, 2024 02:59
Status
Failure
Total duration
2h 1m 45s
Artifacts
–
build_and_unitest.yml
on: pull_request
Setup environment
24s
Matrix: Build Image and Run Unit Testing Suite
Confirm Build and Unit Tests Completed
0s
Annotations
11 errors, 1 warning, and 3 notices
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L1
+from vision_msgs.msg import ObjectHypothesisWithPose, Detection3D, Detection3DArray
+from visualization_msgs.msg import Marker, MarkerArray
+from pcdet.utils import common_utils
+from pcdet.models import build_network, load_data_to_gpu
+from pcdet.datasets import DatasetTemplate
+from pcdet.config import cfg, cfg_from_yaml_file
import argparse
import rclpy
from rclpy.node import Node
|
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L7
import torch
import sys
sys.path.append('/home/bolty/OpenPCDet')
-from pcdet.config import cfg, cfg_from_yaml_file
-from pcdet.datasets import DatasetTemplate
-from pcdet.models import build_network, load_data_to_gpu
-from pcdet.utils import common_utils
-from visualization_msgs.msg import Marker, MarkerArray
-from vision_msgs.msg import ObjectHypothesisWithPose, Detection3D, Detection3DArray
+
class LidarObjectDetection(Node):
def __init__(self):
super().__init__('lidar_object_detection')
self.declare_parameter("model_path", "/home/bolty/OpenPCDet/models/pv_rcnn_8369.pth")
- self.declare_parameter("model_config_path", "/home/bolty/OpenPCDet/tools/cfgs/kitti_models/pv_rcnn.yaml")
+ self.declare_parameter("model_config_path",
+ "/home/bolty/OpenPCDet/tools/cfgs/kitti_models/pv_rcnn.yaml")
self.declare_parameter("lidar_topic", "/velodyne_points")
self.model_path = self.get_parameter("model_path").value
self.model_config_path = self.get_parameter("model_config_path").value
|
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L35
args, cfg = self.parse_config()
self.logger = common_utils.create_logger()
- self.logger.info('-------------------------Starting Lidar Object Detection-------------------------')
+ self.logger.info(
+ '-------------------------Starting Lidar Object Detection-------------------------')
self.demo_dataset = LidarDataset(
dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False, logger=self.logger)
- self.model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=self.demo_dataset)
+ self.model = build_network(model_cfg=cfg.MODEL, num_class=len(
+ cfg.CLASS_NAMES), dataset=self.demo_dataset)
self.model.load_params_from_file(filename=args.ckpt, logger=self.logger, to_cpu=True)
self.model.cuda()
self.model.eval()
|
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L92
marker.color.g = 0.0
marker.color.b = float(pred_dicts[0]['pred_labels'][idx]) / 3
marker_array.markers.append(marker)
-
+
detections = Detection3DArray()
detections.header = pointcloud_msg.header
for idx, box in enumerate(pred_dicts[0]['pred_boxes']):
|
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L109
detected_object.hypothesis.score = float(pred_dicts[0]['pred_scores'][idx])
detection.results.append(detected_object)
detections.detections.append(detection)
-
+
self.bbox_publisher.publish(marker_array)
self.detections_publisher.publish(detections)
|
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L117
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=self.model_config_path,
help='specify the config for demo')
- parser.add_argument('--ckpt', type=str, default=self.model_path, help='specify the pretrained model')
+ parser.add_argument('--ckpt', type=str, default=self.model_path,
+ help='specify the pretrained model')
args, _ = parser.parse_known_args()
cfg_from_yaml_file(args.cfg_file, cfg)
return args, cfg
-
def create_cloud_xyz32(self, header, points):
"""
Create a sensor_msgs/PointCloud2 message from an array of points.
|
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L142
y_angle = np.deg2rad(90)
z_angle = np.deg2rad(-90)
rotation_matrix_y = np.array([
- [np.cos(y_angle), 0, np.sin(y_angle)],
- [0, 1, 0 ],
- [-np.sin(y_angle), 0, np.cos(y_angle)]
+ [np.cos(y_angle), 0, np.sin(y_angle)],
+ [0, 1, 0],
+ [-np.sin(y_angle), 0, np.cos(y_angle)]
])
rotation_matrix_z = np.array([
- [np.cos(z_angle), -np.sin(z_angle), 0],
- [np.sin(z_angle), np.cos(z_angle), 0],
- [0, 0, 1]
+ [np.cos(z_angle), -np.sin(z_angle), 0],
+ [np.sin(z_angle), np.cos(z_angle), 0],
+ [0, 0, 1]
])
points_np = points.cpu().numpy()
|
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L169
return cloud
+
class LidarDataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, logger=None, ext='.bin'):
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, logger=logger
)
+
def main(args=None):
rclpy.init(args=args)
|
src/perception/lidar_object_detection/lidar_object_detection/lidar_object_detection/lidar_object_detection_node.py#L182
node.destroy_node()
rclpy.shutdown()
+
if __name__ == '__main__':
main()
|
src/perception/lidar_object_detection/lidar_object_detection/launch/eve_launch.py#L2
from launch_ros.actions import Node
from ament_index_python.packages import get_package_share_directory
import os
+
def generate_launch_description():
ld = LaunchDescription()
|
Build Image and Run Unit Testing Suite (perception, lidar_object_detection)
buildx failed with: ERROR: failed to solve: process "/bin/sh -c pip3 install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116" did not complete successfully: exit code: 1
|
Build Image and Run Unit Testing Suite (perception, lidar_object_detection)
You are running out of disk space. The runner will stop working when the machine runs out of disk space. Free space left: 0 MB
|
Setup environment
Detected infrastructure changes
|
Setup environment
Using openpcdet-dan as the source branch
|
Setup environment
Using main as the target branch
|