Website: https://sites.google.com/view/leeps
Paper: Coming Soon
- Create a new python virtual env with python 3.6, 3.7 or 3.8 (3.8 recommended). i.e. with conda:
conda create -n LEEPS python==3.8
conda activate LEEPS
- Install required packages:
git clone https://github.com/P1terQ/LEEPS.git & cd LEEPS
pip install -r requirements.txt
- Install Isaac Gym
- Download and install Isaac Gym Preview 3 (Preview 2 will not work!) from https://developer.nvidia.com/isaac-gym
cd isaacgym/python && pip install -e .
- Try running an example
cd examples && python 1080_balls_of_solitude.py
- For troubleshooting check docs
isaacgym/docs/index.html
- Install rsl_rl (PPO implementation)
- Clone this repository
cd AMP_for_hardware/rsl_rl && pip install -e .
- Install legged_gym
cd ../ && pip install -e .
- Train teacher policy:
python legged_gym/scripts/train_v2_rsl.py --task=a1_v2 --run_name xxx-xx
- Train student policy:
python legged_gym/scripts/distill_v2_rsl.py --task=a1_v2 --run_name xxx-xx
- Play teacher policy:
python legged_gym/scripts/play_v2.py --task=a1_v2 --load_run [weight_path]
- Play student policy:
python legged_gym/scripts/play_v2_student.py --task=a1_v2 --load_run [weight_path]
- To run on CPU add the following arguments:
--sim_device=cpu
,--rl_device=cpu
(sim on CPU and rl on GPU is possible). Default on GPU. - To run headless (no rendering) add
--headless
. - To improve performance, once the training starts press
v
to stop the rendering. You can then enable it later to check the progress. - The trained policy is saved in
LEEPS/weights/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt
. Where<experiment_name>
and<run_name>
are defined in the train config. - --task TASK: Task name.
- --resume: Resume training from a checkpoint
- --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load.
- --run_name RUN_NAME: Name of the run.
- --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run.
- --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint.
- --num_envs NUM_ENVS: Number of environments to create.
- --seed SEED: Random seed.
- --max_iterations MAX_ITERATIONS: Maximum number of training iterations.
parkour.mp4
This work was supported in part by the National Natural Science Foundation of China under Grant U2013601 and 62173314.