Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Increasing robustness of adjoint plan optimizations #123

Merged
merged 5 commits into from
Dec 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 4 additions & 9 deletions src/definitions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -681,13 +681,8 @@ function adjoint_mul(p::Plan{T}, x::AbstractArray, ::FFTAdjointStyle) where {T}
dims = fftdims(p)
N = normalization(T, size(p), dims)
pinv = inv(p)
# Optimization: when pinv is a ScaledPlan, check if we can avoid a loop over x.
# Even if not, ensure that we do only one pass by combining the normalization with the plan.
if pinv isa ScaledPlan && pinv.scale == N
return pinv.p * x
else
return (1/N * pinv) * x
end
# Ensure that we do only one pass over the array by combining the normalization with the plan.
return (inv(N) * pinv) * x
end

function adjoint_mul(p::Plan{T}, x::AbstractArray, ::RFFTAdjointStyle) where {T<:Real}
Expand All @@ -698,7 +693,7 @@ function adjoint_mul(p::Plan{T}, x::AbstractArray, ::RFFTAdjointStyle) where {T<
pinv = inv(p)
n = size(pinv, halfdim)
# Optimization: when pinv is a ScaledPlan, fuse the scaling into our map to ensure we do not loop over x twice.
scale = pinv isa ScaledPlan ? pinv.scale / 2N : 1 / 2N
scale = pinv isa ScaledPlan ? pinv.scale / 2N : inv(2N)
twoscale = 2 * scale
unscaled_pinv = pinv isa ScaledPlan ? pinv.p : pinv
y = map(x, CartesianIndices(x)) do xj, j
Expand All @@ -721,7 +716,7 @@ function adjoint_mul(p::Plan{T}, x::AbstractArray, ::IRFFTAdjointStyle) where {T
pinv = inv(p)
d = size(pinv, halfdim)
# Optimization: when pinv is a ScaledPlan, fuse the scaling into our map to ensure we do not loop over x twice.
scale = pinv isa ScaledPlan ? pinv.scale / N : 1 / N
scale = pinv isa ScaledPlan ? pinv.scale / N : inv(N)
twoscale = 2 * scale
unscaled_pinv = pinv isa ScaledPlan ? pinv.p : pinv
y = unscaled_pinv * x
Expand Down
16 changes: 16 additions & 0 deletions test/TestPlans.jl
Original file line number Diff line number Diff line change
Expand Up @@ -278,4 +278,20 @@ AbstractFFTs.plan_inv(p::InplaceTestPlan) = InplaceTestPlan(AbstractFFTs.plan_in
# Don't cache inverse of inplace wrapper plan (only inverse of inner plan)
Base.inv(p::InplaceTestPlan) = InplaceTestPlan(inv(p.plan))

# A wrapper plan whose inverse is not an instance of AbstractFFTs.ScaledPlan, for testing purposes

struct WrapperTestPlan{T,P<:Plan{T}} <: Plan{T}
plan::P
end

Base.size(p::WrapperTestPlan) = size(p.plan)
Base.ndims(p::WrapperTestPlan) = ndims(p.plan)
AbstractFFTs.fftdims(p::WrapperTestPlan) = fftdims(p.plan)
AbstractFFTs.AdjointStyle(p::WrapperTestPlan) = AbstractFFTs.AdjointStyle(p.plan)

Base.:*(p::WrapperTestPlan, x::AbstractArray) = p.plan * x

AbstractFFTs.plan_inv(p::WrapperTestPlan) = WrapperTestPlan(AbstractFFTs.plan_inv(p.plan))
Base.inv(p::WrapperTestPlan) = WrapperTestPlan(inv(p.plan))

end
33 changes: 33 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,39 @@ end
end
end

@testset "Adjoint plan on single-precision" begin
# fft
p = plan_fft(zeros(ComplexF32, 3))
u = rand(ComplexF32, 3)
@test eltype(p' * (p * u)) == eltype(u)
# rfft
p = plan_rfft(zeros(Float32, 3))
u = rand(Float32, 3)
@test eltype(p' * (p * u)) == eltype(u)
# brfft
p = plan_brfft(zeros(ComplexF32, 3), 5)
u = rand(ComplexF32, 3)
@test eltype(p' * (p * u)) == eltype(u)
end

@testset "Adjoint plan application when plan inverse is not a ScaledPlan" begin
# fft
p0 = plan_fft(zeros(ComplexF64, 3))
p = TestPlans.WrapperTestPlan(p0)
u = rand(ComplexF64, 3)
@test p' * u ≈ p0' * u
# rfft
p0 = plan_rfft(zeros(3))
p = TestPlans.WrapperTestPlan(p0)
u = rand(ComplexF64, 2)
@test p' * u ≈ p0' * u
# brfft
p0 = plan_brfft(zeros(ComplexF64, 3), 5)
p = TestPlans.WrapperTestPlan(p0)
u = rand(Float64, 5)
@test p' * u ≈ p0' * u
end

@testset "ChainRules" begin
@testset "shift functions" begin
for x in (randn(3), randn(3, 4), randn(3, 4, 5))
Expand Down
Loading