Skip to content
/ Faiss.jl Public

Julia wrapper around the Faiss library for similarity search with PythonCall.jl

License

Notifications You must be signed in to change notification settings

zsz00/Faiss.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Faiss.jl

A simple Julia wrapper around the Faiss library for similarity search with PythonCall.jl.

While functional and faster than NearestNeighbors.jl.

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU. It is developed primarily at Facebook AI Research.

Installation

The package can be installed with the Julia package manager. From the Julia REPL, type ] to enter the Pkg REPL mode and run:

pkg> add Faiss CondaPkg
julia> using CondaPkg     # type ] to enter Pkg REPL mode
pkg> conda status
pkg> conda add -c pytorch
pkg> conda add faiss-gpu cudatoolkit=11.2  # Install a specific version of faiss based on your need.

If using an already existing Python env, you can:

pkg> add Faiss
julia> ENV["JULIA_PYTHONCALL_EXE"] = "/your/path/of/python"
julia> using Faiss

Usage

using Faiss

println("faiss:", Faiss.faiss.__version__, ", gpus:", ENV["CUDA_VISIBLE_DEVICES"], 
        ", faiss path:", Faiss.faiss.__path__[0], ", num_gpus:", Faiss.faiss.get_num_gpus())
# Faiss.faiss.  Enter Tab to list faiss api

feats = rand(10^4, 128);
top_k = 10
feat_dim = size(feats, 2)   # dimension
idx = Index(feat_dim; str="IDMap2,Flat", metric="L2", gpus="4")  # init Faiss Index
show(idx)   # show idx info

vs_gallery = feats;
vs_query = feats[1:100, :];
ids = collect(range(1, size(feats, 1)))

# add(idx, vs_gallery)
add_with_ids(idx, vs_gallery, ids)
D, I = search(idx, vs_query, top_k) 
println(typeof(D), size(D))
println(D[1:5, :])

note: if you want to use add_with_ids or remove_with_id, str mast contain IDMap2. Otherwise, not contain IDMap2

Documentation

Relevant Pkgs