keras2 + tensorflow + jupyter + flask + openslide + node + npm
docker build -t name:tag .
nvidia-docker run -d -p 8888:8888 --name test -v /home/pzw:/home/workspace 镜像ID
nvidia-docker exec -it 容器ID bash
docker save -o 镜像名称
docker export -o 容器名称
参考 https://github.com/zhudaoruyi/nvidia-docker
注意:安装 nvidia-docker 之前先安装好 docker
为了确认 nvidia-docker 是否安装成功,运行
nvidia-docker run --rm nvidia/cuda nvidia-smi
如果正确输出了本机的 GPU 信息,则安装成功。
例如:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.48 Driver Version: 367.48 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M40 24GB Off | 0000:02:00.0 Off | 0 |
| N/A 33C P0 57W / 250W | 22427MiB / 22939MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M40 24GB Off | 0000:82:00.0 Off | 0 |
| N/A 37C P0 58W / 250W | 21663MiB / 22939MiB | 0% Default |
+-------------------------------+----------------------+---------------------