Skip to content

zhudaoruyi/deep-learning-gpu-env

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

深度学习 docker 环境 GPU 加速版,包含以下安装包:

keras2 + tensorflow + jupyter + flask + openslide + node + npm


Dockerfile 构建镜像的方法

docker build -t name:tag .

运行该镜像的方法(GPU加速)

nvidia-docker run -d -p 8888:8888 --name test -v /home/pzw:/home/workspace 镜像ID

nvidia-docker exec -it 容器ID bash

保存该镜像的方法

docker save -o 镜像名称

保存该容器的方法

docker export -o 容器名称

nvidia-docker 的安装

参考 https://github.com/zhudaoruyi/nvidia-docker

注意:安装 nvidia-docker 之前先安装好 docker

为了确认 nvidia-docker 是否安装成功,运行

nvidia-docker run --rm nvidia/cuda nvidia-smi

如果正确输出了本机的 GPU 信息,则安装成功。

例如:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.48                 Driver Version: 367.48                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla M40 24GB      Off  | 0000:02:00.0     Off |                    0 |
| N/A   33C    P0    57W / 250W |  22427MiB / 22939MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla M40 24GB      Off  | 0000:82:00.0     Off |                    0 |
| N/A   37C    P0    58W / 250W |  21663MiB / 22939MiB |      0%      Default |
+-------------------------------+----------------------+---------------------

About

keras2+tensorflow+jupyter+flask+openslide+node+npm+gpu

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages