Skip to content

Commit

Permalink
Some updates
Browse files Browse the repository at this point in the history
Signed-off-by: zeramorphic <[email protected]>
  • Loading branch information
zeramorphic committed May 10, 2024
1 parent d83e401 commit f7048f1
Show file tree
Hide file tree
Showing 8 changed files with 65 additions and 63 deletions.
2 changes: 1 addition & 1 deletion ii/lst/05_set_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ \subsection{Axioms of \texorpdfstring{\(\symsfup{ZF}\)}{ZF}}
where \( z \subseteq x \) means \( (\forall t)(t \in z \Rightarrow t \in x) \).
We write \( \mathcal P(x) \) for the power set of \( x \).
We can form the Cartesian product \( x \times y \) as a suitable subset of \( \mathcal P(\mathcal P(x \cup y)) \), as if \( z \in x, t \in y \), we have \( (z, t) = \qty{\qty{z}, \qty{z, t}} \in \mathcal P(\mathcal P(x \cup y)) \).
The set of all functions \( x \to y \) can be defined as a subset of \( \mathbb P(x \times y) \).
The set of all functions \( x \to y \) can be defined as a subset of \( \mathcal P(x \times y) \).
\item \emph{Axiom of infinity}.
Using our currently defined axioms, any model \( V \) must be infinite.
For example, writing \( x^+ \) for the \emph{successor} of \( x \) defined as \( x \cup \qty{x} \), the sets \( \varnothing, \varnothing^+, \varnothing^{++}, \dots \) are distinct.
Expand Down
28 changes: 14 additions & 14 deletions iii/forcing/01_set_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ \subsection{Introduction to independence results}
\end{theorem}
The continuum hypothesis is that there are no sets of cardinality strictly between \( \abs{\mathbb N} \) and \( \abs{\mathcal P(N)} = \abs{\mathbb R} \).
\begin{definition}
The \emph{continuum hypothesis} \( \mathsf{CH} \) states that if \( X \subseteq \mathbb P(\mathbb N) \) is infinite, then either \( \abs{X} = \abs{\mathbb N} \) or \( \abs{X} = \abs{\mathcal P(\mathbb N)} \), or equivalently,
The \emph{continuum hypothesis} \( \mathsf{CH} \) states that if \( X \subseteq \mathcal P(\mathbb N) \) is infinite, then either \( \abs{X} = \abs{\mathbb N} \) or \( \abs{X} = \abs{\mathcal P(\mathbb N)} \), or equivalently,
\[ 2^{\aleph_0} = \aleph_1 \]
\end{definition}
Progress was made on the continuum hypothesis in the 19th and 20th centuries.
Expand All @@ -42,7 +42,7 @@ \subsection{Systems of set theory}
We write \( \mathrm{FV}(\varphi) \) for the set of free variables of \( \varphi \).
We will write \( \varphi(u_1, \dots, u_n) \) to emphasise the dependence of \( \varphi \) on its free variables \( u_1, \dots, u_n \).
By doing so, we will allow ourselves to freely change the names of the free variables, and assume that substituted variables are free.
The syntax \( \varphi(u_0, \dots, u_n) \) does not imply that \( u_i \) occurs freely, or even at all.
The syntax \( \varphi(u_1, \dots, u_n) \) does not imply that \( u_i \) occurs freely, or even at all.

Some of the most common axioms of set theory are as follows.
\begin{enumerate}
Expand Down Expand Up @@ -96,7 +96,7 @@ \subsection{Systems of set theory}
We can then use formulas of the form
\[ \exists C.\, (C \text{ is a class} \wedge \forall x \in C.\, \varphi) \]
by defining it to mean that there is a formula \( \theta \) giving a class \( C \) satisfying \( \forall x \in C.\, \varphi \).
For example, the universe class \( \mathrm{V} = \qty{x \mid x = x} \), the Russell class \( R = \qty{x \mid x \notin x} \), and the class of ordinals are all definable.
For example, the universe class \( \mathrm{V} = \qty{x \mid x = x} \), the Russell class \( R = \qty{x \mid x \notin x} \), and the class of ordinals \( \mathrm{Ord} \) are all definable.
Any set is a definable class.
Classes are heavily dependent on the underlying model: if \( M = 2 \) then \( \mathrm{Ord} = 2 = M \), and if \( M = 3 \cup \qty{1} \) then \( \mathrm{Ord} = 3 \neq M \).

Expand Down Expand Up @@ -128,10 +128,10 @@ \subsection{Adding defined functions}
\begin{example}
The intersection \( a \cap b \) can be defined as the unique set \( c \) such that
\[ \forall x.\, (x \in c \iff x \in a \wedge x \in b) \]
This definition makes sense only if there is a unique \( c \) satisfying this formula \( \varphi(c) \).
This definition makes sense only if there is a unique \( c \) satisfying this formula \( \varphi(a, b, c) \).
If
\[ M = \qty{a, c, d, \qty{a}, \qty{a, b}, \qty{a, b, c}, \qty{a, b, d}} \]
then it is easy to check that both \( \qty{a} \) and \( \qty{a, d} \) satisfy \( \varphi \), so intersection cannot be defined.
then it is easy to check that both \( \qty{a} \) and \( \qty{a, b} \) satisfy \( \varphi(\{ a, b, c \}, \{ a, b, d \}, -) \), so intersection cannot be defined.
\end{example}

\subsection{Absoluteness}
Expand All @@ -140,8 +140,8 @@ \subsection{Absoluteness}
Other definitions need not, for example \( \mathcal P(\mathbb N) \), which need not be the true power set in a given transitive model.
To quantify this behaviour, we need to define what it means for \( \varphi \) to hold in an arbitrary structure; this concept is called \emph{relativisation}.
\begin{definition}
The quantifier \( \forall x \in a.\, \varphi \) is an abbreviation of \( \forall x.\, x \in a \Rightarrow \varphi \).
We use the analogous abbreviation for the existential quantifier.
The quantifier \( \forall x \in a.\, \varphi \) is an abbreviation of \( \forall x.\, (x \in a) \to \varphi \).
Similarly, \( \exists x \in a.\, \varphi \) is an abbreviation of \( \exists x.\, (x \in a) \wedge \varphi \).
Let \( W \) be a class; we define by recursion the \emph{relativisation} \( \varphi^W \) of \( \varphi \) as follows.
\begin{align*}
(x \in y)^W &\equiv x \in y \\
Expand All @@ -168,7 +168,7 @@ \subsection{Absoluteness}
We proceed by induction on the length of formulae.
For example,
\[ N \vDash (x \in y)^M \text{ iff } N \vDash x \in y \text{ and } x, y \in M \text{ iff } \theta(x), \theta(y), M \vDash x \in y \]
The cases for equality is similar, and disjunction and negation are simple.
The case for equality is similar, and disjunction and negation are simple.
Finally,
\[ N \vDash (\exists x.\, \varphi(x))^M \text{ iff } N \vDash \exists x.\, x \in M \wedge \varphi^M(x) \]
which holds precisely when there is some \( x \in N \) such that \( N \vDash x \in M \) and \( N \vDash \varphi^M(x) \), but \( N \vDash x \in M \) if and only if \( \theta(x) \), giving the result as required.
Expand Down Expand Up @@ -198,7 +198,7 @@ \subsection{Absoluteness}
\( \varphi \leftrightarrow \psi \) does not imply \( \varphi^M \leftrightarrow \psi^M \).
Let \( \varphi(v) \) be the statement \( \forall x.\, (x \notin v) \); in \( \mathsf{ZF} \) this defines \( \varnothing \).
Now, the following are two ways to express \( 0 \in z \).
\[ \psi(z) \equiv \exists y.\, (\varphi(y) \wedge y \in z);\quad \theta(z) \equiv \forall y.\, (\varphi(y) \Rightarrow y \in z) \]
\[ \psi(z) \equiv \exists y.\, (\varphi(y) \wedge y \in z);\quad \theta(z) \equiv \forall y.\, (\varphi(y) \to y \in z) \]
Note that if there exists a unique \( y \) such that \( \varphi(y) \), then these are equivalent.
However, this is often not the case, for example if
\[ a = 0;\quad b = \qty{0};\quad c = \qty{\qty{\qty{0}}};\quad M = \qty{a, b, c} \]
Expand All @@ -207,7 +207,7 @@ \subsection{Absoluteness}
The main obstacle to absoluteness for basic statements turns out to be transitivity of the model.
\begin{definition}
Given classes \( M \subseteq N \), we say that \( M \) is \emph{transitive} in \( N \) if
\[ \forall x, y \in N.\, (x \in M \wedge y \in x \Rightarrow y \in M) \]
\[ \forall x, y \in N.\, (x \in M \wedge y \in x \to y \in M) \]
\end{definition}

\subsection{The L\'evy hierarchy}
Expand Down Expand Up @@ -324,7 +324,7 @@ \subsection{The L\'evy hierarchy}
\[ \forall x \in a.\, \langle x, x \rangle \notin r \]
\end{proof}
\begin{corollary}
The statement that \( x \) is a transitive set totally ordered by \( \in \) is \( \Delta_0 \), and thus ordinals are in fact \( \Delta_0 \).
The statement that \( x \) is a transitive set totally ordered by \( \in \) is \( \Delta_0 \), and thus being an ordinal is \( \Delta_0 \).
\end{corollary}
\begin{lemma}
(\( \mathsf{ZF} \))
Expand Down Expand Up @@ -522,7 +522,7 @@ \subsection{The reflection theorem}
\eta & \text{where } \eta \text{ is the least ordinal such that } \exists x \in W_\eta.\, \varphi_j^W(x, \vb y)
\end{cases} \]
We set
\[ G_i(\delta) = \sup\qty{F_i(\vb y) \mid y \in W_\delta^{k_i}} \]
\[ G_i(\delta) = \sup\qty{F_i(\vb y) \mid \vb y \in W_\delta^{k_i}} \]
If \( \varphi_i \) is not of this form, we set \( G_i(\delta) = 0 \) for all \( \delta \).
Finally, we let
\[ K(\delta) = \max\qty{\delta + 1, G_1(\delta), \dots, G_n(\delta)} \]
Expand Down Expand Up @@ -572,7 +572,7 @@ \subsection{The reflection theorem}
Then \( T \) is not finitely axiomatisable.
That is, for any finite set of sentences \( \Gamma \) in \( \mathcal L_\in \) such that \( T \vdash \Gamma \), there exists a sentence \( \varphi \) such that \( T \vdash \varphi \) but \( \Gamma \nvdash \varphi \).
\end{corollary}
This only holds for first-order theories; for example, G\"odel--Bernays set theory is finitely axiomatisable.
This only holds for first-order theories without classes; for example, G\"odel--Bernays set theory is finitely axiomatisable.
\begin{proof}
Let \( \varphi_1, \dots, \varphi_n \) be a set of sentences such that \( T \vdash \bigwedge_{i=1}^n \varphi_i \).
Suppose that \( \bigwedge_{i=1}^n \varphi_i \) proves every axiom of \( T \).
Expand All @@ -599,7 +599,7 @@ \subsection{Cardinal arithmetic}
The cardinal arithmetic operations are defined as follows.
Let \( \kappa, \lambda \) be cardinals.
\begin{enumerate}
\item \( \kappa + \lambda = \abs{0 \times \kappa \cup 1 \times \lambda} \);
\item \( \kappa + \lambda = \abs{\qty{0} \times \kappa \cup \qty{1} \times \lambda} \);
\item \( \kappa \cdot \lambda = \abs{\kappa \times \lambda} \);
\item \( \kappa^\lambda = \abs{\kappa^\lambda} \), the cardinality of the set of functions \( \lambda \to \kappa \);
\item \( \kappa^{<\lambda} = \sup\qty{\kappa^\alpha \mid \alpha < \lambda, \alpha \text{ a cardinal}} \).
Expand Down
30 changes: 17 additions & 13 deletions iii/forcing/02_constructibility.tex
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,9 @@ \subsection{Definable sets}
\end{remark}
This definition involves a quantification over infinitely many formulas, so is not yet fully formalised.
One method to do this is to code formulas as elements of \( \mathrm{V}_\omega \), called \emph{G\"odel codes}.
We can then use Tarski's satisfaction relation to define a formula \( \mathsf{Sat} \), and can then prove
We can then use Tarski's \emph{satisfaction relation} to define a formula \( \mathsf{Sat} \), and can then prove
\[ \mathsf{Sat}(M, E, \ulcorner \varphi \urcorner, x_1, \dots, x_n) \leftrightarrow (M, \in) \vDash \varphi(x_1, \dots, x_n) \]
where \( \ulcorner \varphi \urcorner \in V_\omega \) is the G\"odel code for \( \varphi \).
where \( \ulcorner \varphi \urcorner \in \mathrm{V}_\omega \) is the G\"odel code for \( \varphi \).
We will later use a different method to formalise it, but for now we will assume that this is well-defined.

\subsection{Defining the constructible universe}
Expand Down Expand Up @@ -63,7 +63,7 @@ \subsection{Defining the constructible universe}
Then
\[ \bigcup a = \qty{x \in \mathrm{L}_\alpha \mid (\mathrm{L}_\alpha, \in) \vDash \exists z.\, (z \in a \wedge x \in z)} \in \operatorname{Def}(\mathrm{L}_\alpha) \]
\item For infinity, note that
\[ \omega = \qty{n \in \mathrm{L}_\omega \mid (\mathrm{L}_\omega, \in) \vDash n \in \mathrm{Ord}} \in \operatorname{Def}(\mathrm{L}_\alpha) \]
\[ \omega = \qty{n \in \mathrm{L}_\omega \mid (\mathrm{L}_\omega, \in) \vDash n \in \mathrm{Ord}} \in \operatorname{Def}(\mathrm{L}_\omega) \]
\item Consider separation.
Let \( \varphi \) be a formula, and let \( a, \vb u \in \mathrm{L}_\alpha \).
We claim that
Expand Down Expand Up @@ -123,8 +123,7 @@ \subsection{G\"odel functions}
\item The reversed order of the free variables is done purely for technical reasons.
\item \( \mathcal F_2 \) will correspond to disjunction for \( \Delta_0 \) formulas, intersection will correspond to intersection, \( \mathcal F_3 \) will give negation, and \( \mathcal F_9 \) and \( \mathcal F_{10} \) will give atomic formulas.
\item \( \mathcal F_7 \) and \( \mathcal F_8 \) will deal with ordered \( n \)-tuples.
The triple \( \langle x_1, x_2, x_3 \rangle \), this is formed using \( x_1 \) and \( \langle x_2, x_3 \rangle \).
However, it cannot be formed using \( \langle x_1, x_2 \rangle \) and \( x_3 \).
For example, the triple \( \langle x_1, x_2, x_3 \rangle \) is formed using \( x_1 \) and \( \langle x_2, x_3 \rangle \), but it cannot be formed using \( \langle x_1, x_2 \rangle \) and \( x_3 \) without \( \mathcal F_7 \) or \( \mathcal F_8 \).
\end{enumerate}
\end{remark}
\begin{proof}
Expand Down Expand Up @@ -241,7 +240,8 @@ \subsection{G\"odel functions}
The equalities are termed formulas as above, so \( \psi \) is a termed formula.
Then
\begin{align*}
\mathcal F_\varphi(a_1, \dots, a_n) &= \ran\ran\{\langle x_{n+2}, \dots, x_1\rangle \times a_j \times a_i \times a_n \times \dots \times a_1 \\&\quad\quad\quad\mid x_i = x_{n+1} \wedge x_j = x_{n+2} \wedge x_{n+1} \in x_{n+2}\} \\
\mathcal F_\varphi(a_1, \dots, a_n) &=
\ran\ran\{\langle x_{n+2}, \dots, x_1\rangle \times a_j \times a_i \times a_n \times \dots \times a_1 \mid \\&\quad\quad\quad x_i = x_{n+1} \wedge x_j = x_{n+2} \wedge x_{n+1} \in x_{n+2}\} \\
&= \mathcal F_6(\mathcal F_6(\mathcal F_\psi(a_1, \dots, a_n), a_1), a_1)
\end{align*}
\end{itemize}
Expand All @@ -257,19 +257,23 @@ \subsection{G\"odel functions}
Now
\begin{align*}
\mathcal F_{\theta \wedge \psi}(a_1, \dots, a_n, \mathcal F_2(a_j, a_j)) &= \mathcal F_{\theta \wedge \psi}\qty(a_1, \dots, a_n, \bigcup a_j) \\
&= \qty{\langle x_{n+1}, \dots, x_1 \rangle \in \qty(\bigcup a_j) \times a_n \times \dots \times a_1 \mid x_{n+1} \in x_j \wedge \forall k \leq n.\, x_k \in a_k \wedge \psi(x_1, \dots, x_{n+1})}
&= \Big\{\langle x_{n+1}, \dots, x_1 \rangle \in \qty(\bigcup a_j) \times a_n \times \dots \times a_1 \mid \\
&\quad\quad\quad x_{n+1} \in x_j \wedge \forall k \leq n.\, x_k \in a_k \wedge \psi(x_1, \dots, x_{n+1})\Big\}
\end{align*}
So
\begin{align*}
\ran(\mathcal F_{\theta \wedge \psi}\qty(a_1, \dots, a_n, \bigcup a_j)) &= \qty{\langle x_n, \dots, x_1 \rangle \in a_n \times \dots \times a_1 \mid \exists u.\, \langle u, x_n, \dots, x_1 \rangle \in \mathcal F_{\theta \wedge \psi}\qty(a_1, \dots, a_n, \bigcup a_j)} \\
&= \qty{\langle x_n, \dots, x_1 \rangle \in a_n \times \dots \times a_1 \mid \exists x_{n+1} \in x_j.\, \psi(x_1, \dots, x_{n+1})}
\ran(\mathcal F_{\theta \wedge \psi}\qty(a_1, \dots, a_n, \bigcup a_j))
&= \Big\{\langle x_n, \dots, x_1 \rangle \in a_n \times \dots \times a_1 \mid \\
&\quad\quad\quad \exists u.\, \langle u, x_n, \dots, x_1 \rangle \in \mathcal F_{\theta \wedge \psi}\qty(a_1, \dots, a_n, \bigcup a_j)\Big\} \\
&= \Big\{\langle x_n, \dots, x_1 \rangle \in a_n \times \dots \times a_1 \mid \\
&\quad\quad\quad \exists x_{n+1} \in x_j.\, \psi(x_1, \dots, x_{n+1})\Big\}
\end{align*}
\end{proof}
\begin{definition}
A class \( C \) is \emph{closed under G\"odel functions} if whenever \( x, y \in C \), we have \( \mathcal F_i(x, y) \in C \) for \( i \in \qty{1, \dots, 10} \).
Given a set \( b \), we let \( \mathrm{cl}(b) \) be the smallest set \( C \) containing \( b \) as a subset that is closed under G\"odel functions.
\end{definition}
For example, \( \mathrm{cl}(\varnothing) = \varnothing \), \( \qty{a, b} \in \mathrm{cl}(\qty{a, b}) \), and \( \mathrm{cl}(b) = \mathrm{cl}(\mathrm{cl}(b)) \).
For example, \( \mathrm{cl}(\varnothing) = \varnothing \), \( a, b \in \mathrm{cl}(\qty{a, b}) \), and \( \mathrm{cl}(b) = \mathrm{cl}(\mathrm{cl}(b)) \).
\begin{definition}
Let \( b \) be a set.
Define \( \mathcal D^n(b) \) inductively by
Expand Down Expand Up @@ -331,7 +335,7 @@ \subsection{The axiom of constructibility}
The \emph{axiom of constructibility} is the statement \( \mathrm{V} = \mathrm{L} \).
Equivalently, \( \forall x.\, \exists \alpha \in \mathrm{Ord}.\, (x \in \mathrm{L}_\alpha) \).
\end{definition}
We will show that if \( \mathsf{ZF} \) is consistent, then so is \( \mathsf{ZF} + (\mathrm{V} = \mathrm{L}) \), because \( \mathrm{L} \) is a model of \( \mathsf{ZF} + (\mathrm{V} = \mathrm{L}) \).
We will show that if \( \mathsf{ZF} \) is consistent, then so is \( \mathsf{ZF} + (\mathrm{V} = \mathrm{L}) \), by demonstrating that \( \mathrm{L} \) is a model of \( \mathsf{ZF} + (\mathrm{V} = \mathrm{L}) \).
To do this, we will show that being constructible is absolute.
\begin{lemma}
\( Z = \mathrm{cl}(M) \) is \( \Delta_1^{\mathsf{ZF}} \).
Expand Down Expand Up @@ -513,7 +517,7 @@ \subsection{The generalised continuum hypothesis in \texorpdfstring{\( \mathrm{L
Then fix \( \varphi \) such that
\[ \mathsf{ZFC} + \mathrm{V} = \mathrm{L} + \mathsf{GCH} \vdash \varphi \wedge \neg\varphi \]
Then
\[ \mathsf{ZF} \vDash (\varphi \wedge \neg\varphi)^L \]
\[ \mathsf{ZF} \vdash (\varphi \wedge \neg\varphi)^L \]
By relativisation, \( \varphi^L \wedge \neg(\varphi^L) \).
Hence \( \mathsf{ZF} \) is inconsistent.
\end{proof}
Expand Down Expand Up @@ -549,7 +553,7 @@ \subsection{Combinatorial properties}
\end{lemma}
\begin{proof}
If \( (A_\alpha)_{\alpha < \omega_1} \) is a \( \diamondsuit \)-sequence, then for all \( X \subseteq \omega \), there is \( \alpha > \omega \) such that \( X = A_\alpha \).
Thus \( \qty{A_\alpha \mid \alpha \in \omega_1 \mid A_\alpha \subseteq \omega} = \mathcal P(\omega) \).
Thus \( \qty{A_\alpha \mid \alpha \in \omega_1 \wedge A_\alpha \subseteq \omega} = \mathcal P(\omega) \).
\end{proof}
\begin{theorem}
If \( \mathrm{V} = \mathrm{L} \), then \( \diamondsuit \) holds.
Expand Down
Loading

0 comments on commit f7048f1

Please sign in to comment.