Skip to content

Commit

Permalink
Lectures 09B
Browse files Browse the repository at this point in the history
  • Loading branch information
zeramorphic committed Oct 25, 2023
1 parent bbad955 commit e983e5a
Show file tree
Hide file tree
Showing 7 changed files with 316 additions and 9 deletions.
89 changes: 80 additions & 9 deletions iii/alggeom/03_schemes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -106,14 +106,85 @@ \subsection{Definitions and examples}
\begin{definition}
A \emph{scheme} is a ringed space \( (X, \mathcal O_X) \) where every point \( p \in X \) has a neighbourhood \( U_p \) such that the ringed space \( (U_p, \mathcal O_{U_p}) \) is isomorphic to some affine scheme.
\end{definition}
% \item Let \( X = \Spec \mathbb C[x, y] \) and \( U = \qty{(x, y)}^c \).
% Then the scheme \( U \) is not an affine scheme.
% % exercise: why?
\begin{proposition}
Let \( X \) be a scheme, \( U \subseteq X \) an open set, and \( i : U \hookrightarrow X \) be the inclusion map.
Then, the ringed space \( (U, \mathcal O_U) \) is a scheme, where
\[ \mathcal O_U = \eval{\mathcal O_X}_U = i^{-1} \mathcal O_X \]
\end{proposition}
For example, take \( X = \Spec A \) and \( U = U_f \) for some \( f \in A \).
Then \( (U, \mathcal O_U) \cong (\Spec A_f, \mathcal O_{\Spec A_f}) \).
\begin{proof}
Let \( p \in U \subseteq X \).
Since \( X \) is a scheme, we can find \( \qty(V_p, \eval{O_X}_{V_p}) \) inside \( X \) with \( p \in V_p \), such that \( V_p \) is isomorphic to an affine scheme.
Then take \( V_p \cap U \subseteq U \) with structure sheaf given by the inclusion map.
Note that \( V_p \cap U \) may not be affine, but \( V_p \cong \Spec B \), and the distinguished opens in \( \Spec B \) form a basis.
This reduces the problem to the example of a distinguished open set above.
\end{proof}
\begin{definition}
\emph{Affine space} of dimension \( n \) over \( k \) is defined to be
\[ \mathbb A_k^n = \Spec k[x_1, \dots, x_n] \]
\end{definition}
\begin{example}
\begin{enumerate}
\item The spectrum \( \Spec A \) of each ring \( A \) is a scheme.
\item Let \( X \) be a scheme and \( U \subseteq X \) an open set.
Take \( \mathcal O_U = \eval{\mathcal O_X}_U \) to be the structure sheaf of \( U \).
Thus \( U \) is a scheme: as the \( U_f \) form a basis, there is always a sufficiently small neighbourhood inside \( U \) isomorphic to an affine scheme.
\item Let \( X = \Spec \mathbb C[x, y] \) and \( U = \qty{(x, y)}^c \).
Then the scheme \( U \) is not an affine scheme.
% exercise: why?
\end{enumerate}
Let
\[ U = \mathbb A_k^{n^2} \setminus \qty{\det (x_{ij}) = 0} \]
which is the open set representing \( GL_n(k) \).
We will show that the multiplication map \( U \times U \to U \) is a morphism of schemes.
\end{example}
\begin{example}
Let \( U = \mathbb A_k^2 \setminus (x, y) \).
This is a scheme representing a plane without an origin.
We claim that \( U \) is not an affine scheme.
Suppose that \( U \) were affine; we aim to calculate \( \mathcal O_U(U) \).
Write
\[ U_x = \mathbb V(x)^c \subseteq \mathbb A_k^2;\quad U_y = \mathbb V(y)^c \subseteq \mathbb A_k^2 \]
These two open sets cover \( U \), and
\[ U_x \cap U_y = U_{xy} = \mathbb A_k^2 \setminus \mathbb V(xy) \]
Then,
\[ \mathcal O_U(U_x) = k[x,x^{-1},y];\quad \mathcal O_U(U_y) = k[x,y,y^{-1}];\quad \mathcal O_U(U_x \cap U_y) = k[x,x^{-1},y,y^{-1}] \]
The restriction maps \( \mathcal O_U(U_x) \to \mathcal O_U(U_{xy}) \) and \( \mathcal O_U(U_y) \to \mathcal O_U(U_{xy}) \) are the obvious ones.
By the sheaf axioms,
\[ \mathcal O_U(U) = k[x,x^{-1},y] \cap k[x,y,y^{-1}] \subseteq k[x,x^{-1},y,y^{-1}] \]
Thus, \( \mathcal O_U(U) = k[x,y] \).
This is a contradiction: one way to see this is that there exists a maximal ideal \( (x, y) \) in the ring of global sections in \( (U, \mathcal O_U) \) with empty vanishing locus.
\end{example}

\subsection{Gluing sheaves}
% TODO: move?
Let \( X \) be a topological space with a cover \( \qty{U_\alpha} \).
Let \( \qty{\mathcal F_\alpha} \) be sheaves on \( \qty{U_\alpha} \), with isomorphisms
\[ \varphi_{\alpha\beta} : \eval{\mathcal F_\alpha}_{U_\alpha \cap U_\beta} \to \eval{\mathcal F_\beta}_{U_\alpha \cap U_\beta} \]
such that
\[ \varphi_{\alpha\alpha} = \id;\quad \varphi_{\alpha\beta} = \varphi_{\beta\alpha}^{-1};\quad \varphi_{\beta\gamma} \circ \varphi_{\alpha\beta} = \varphi_{\alpha\gamma} \]
The last equation is called the \emph{cocycle condition}.
This combination of conditions resembles the definition of an equivalence relation, with reflexivity, symmetry, and transitivity.

We will construct a sheaf \( \mathcal F \) on \( X \).
Given \( V \subseteq X \) open, we define
\[ \mathcal F(V) = \qty{(s_\alpha) \in \prod_\alpha \mathcal F_\alpha(U_\alpha \cap V) \midd \varphi_{\alpha\beta}\qty(\eval{s_\alpha}_{V \cap U_\alpha \cap U_\beta}) = \eval{s_\beta}_{V \cap U_\alpha \cap U_\beta}} \]
\( \mathcal F \) is a presheaf.
Indeed, given \( (s_\alpha) \in \mathcal F(V) \) and \( W \subseteq V \) open, we take
\[ \eval{(s_\alpha)}_W = \qty(\res_{W \cap U_\alpha}^{V \cap U_\alpha}(s_\alpha))_\alpha \]
This lies in \( \mathcal F(W) \) by the sheaf axioms.
One check easily check that this is a sheaf.
\begin{proposition}
\( \eval{\mathcal F}_{U_\gamma} \) and \( \mathcal F_\gamma \) are canonically isomorphic as sheaves on \( U_\gamma \).
\end{proposition}
\begin{proof}
First, we construct a map \( \mathcal F_\gamma \to \eval{\mathcal F}_{U_\gamma} \).
Let \( V \subseteq U_\gamma \) and \( s \in \mathcal F_\gamma(V) \).
Define its image in \( \eval{\mathcal F}_{U_\gamma} \) to be
\[ \varphi_{\gamma\alpha}\qty(\eval{s}_{V \cap U_\alpha})_\alpha \]
We must check that this tuple lies in \( \eval{\mathcal F}_{U_\gamma}(V) = \mathcal F(V) \).
\[ \varphi_{\alpha\beta} \circ \varphi_{\gamma\alpha}\qty(\eval{s}_{V \cap U_\alpha \cap U_\beta}) = \varphi_{\gamma\beta}\qty(\eval{s}_{V \cap U_\alpha \cap U_\beta}) \]
\end{proof}

\subsection{???}
\begin{example}
Let \( (X, \mathcal O_X) \) and \( (Y, \mathcal O_Y) \) be schemes with open sets \( U \subseteq X, V \subseteq Y \), and let \( \varphi : (U, \mathcal \eval{O_X}_U) \to (V, \mathcal \eval{O_Y}_V) \) be an isomorphism.
The topological spaces \( X, Y \) can be glued on \( U, V \) using \( \varphi \).
We can similarly glue the relevant sheaves together, thus gluing \( X \) and \( Y \) together as schemes.
Note that in this case, there is no cocycle condition.
\end{example}
14 changes: 14 additions & 0 deletions iii/cat/03_adjunctions.tex
Original file line number Diff line number Diff line change
Expand Up @@ -335,5 +335,19 @@ \subsection{Reflections}
For an abelian group \( A \), its set of torsion elements forms a subgroup \( A_t \), which is a torsion group.
Any homomorphism from a torsion group to \( A \) must factor through \( A_t \).
Thus \( A_t \) is the coreflection of \( A \) in the category of torsion abelian groups, and \( \faktor{A}{A_t} \) is the reflection of \( A \) in the category of torsion-free abelian groups.
\item The full subcategory \( \mathbf{KHaus} \) of compact Hausdorff spaces is reflective in the category \( \mathbf{Top} \) of topological spaces.
The left adjoint to the inclusion map is the \emph{Stone--\v{C}ech compactification} functor \( \beta \).
We will construct this functor using the special adjoint functor theorem, which is explored in the next section.
\item Recall that a subset \( C \) of a topological space \( X \) is called \emph{sequentially closed} if for every sequence \( x_n \in C \) converging to a limit \( x \in X \), we have \( x \in C \).
We say that \( X \) is a \emph{sequential space} if all sequentially closed subsets are closed.
The full subcategory \( \mathbf{Seq} \) of sequential spaces is coreflective in \( \mathbf{Top} \).
Given a space \( X \), let \( X_s \) denote the same set, but where the topology is such that all sequentially closed sets are also taken to be closed.
The identity map \( X_s \to X \) is continuous, and forms the counit of the adjunction.
\item The category \( \mathbf{Preord} \) of preorders is reflective in \( \mathbf{Cat} \).
The left adjoint maps a category \( \mathcal C \) to the quotient category \( \faktor{\mathbb C}{\sim} \) where \( \sim \) identifies all parallel pairs of morphisms.
\item Let \( X \) be a topological space.
Then the poset \( \Omega X \) of open sets in \( X \) is coreflective in the poset \( PX \), since if \( U \) is open and \( A \) is an arbitrary subset of \( X \), then \( U \subseteq A \) if and only if \( U \subseteq A^\circ \).
Thus the interior operator \( (-)^\circ \) is right adjoint to the inclusion \( \Omega X \to PX \).
Dually, the poset of closed sets is reflective in \( PX \); the closure operator \( \overline{(-)} \) is left adjoint to the inclusion.
\end{enumerate}
\end{example}
158 changes: 158 additions & 0 deletions iii/cat/04_limits.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
\subsection{Cones over diagrams}
To formally define limits and colimits, we first need to define more precisely what is meant by a diagram in a category.
\begin{definition}
Let \( J \) be a category, which will almost always be small, and often finite.
A \emph{diagram} of shape \( J \) in a category \( \mathcal C \) is a functor \( D : J \to \mathcal C \).
\end{definition}
We call the objects \( D(j) \) the \emph{vertices} of the diagram, and the morphisms \( D(\alpha) \) the \emph{edges} of the diagram.
\begin{example}
Let \( J \) be the finite category
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXGJ1bGxldCJdLFsxLDAsIlxcYnVsbGV0Il0sWzEsMSwiXFxidWxsZXQiXSxbMCwxLCJcXGJ1bGxldCJdLFswLDFdLFsxLDJdLFswLDJdLFswLDNdLFszLDJdXQ==
\[\begin{tikzcd}
\bullet & \bullet \\
\bullet & \bullet
\arrow[from=1-1, to=1-2]
\arrow[from=1-2, to=2-2]
\arrow[from=1-1, to=2-2]
\arrow[from=1-1, to=2-1]
\arrow[from=2-1, to=2-2]
\end{tikzcd}\]
A diagram of shape \( J \) in \( \mathcal C \) is exactly a commutative square in \( \mathcal C \).
The diagonal arrow is required to make \( J \) into a category.
\end{example}
\begin{example}
Let \( J \) be the finite category
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXGJ1bGxldCJdLFsxLDAsIlxcYnVsbGV0Il0sWzEsMSwiXFxidWxsZXQiXSxbMCwxLCJcXGJ1bGxldCJdLFswLDFdLFsxLDJdLFswLDNdLFszLDJdLFswLDIsIiIsMSx7Im9mZnNldCI6LTJ9XSxbMCwyLCIiLDEseyJvZmZzZXQiOjJ9XV0=
\[\begin{tikzcd}
\bullet & \bullet \\
\bullet & \bullet
\arrow[from=1-1, to=1-2]
\arrow[from=1-2, to=2-2]
\arrow[from=1-1, to=2-1]
\arrow[from=2-1, to=2-2]
\arrow[shift left=1, from=1-1, to=2-2]
\arrow[shift right=1, from=1-1, to=2-2]
\end{tikzcd}\]
Then a diagram of shape \( J \) in \( \mathcal C \) is a square of objects in \( \mathcal C \) whose morphisms may or may not commute.
\end{example}
\begin{definition}
Let \( D \) be a diagram of shape \( J \) in \( \mathcal C \).
A \emph{cone over \( D \)} consists of an object \( C \in \ob \mathcal C \) called the \emph{apex} of the cone, together with morphisms \( \lambda_j : A \to D(j) \) called the \emph{legs} of the cone, such that all triangles of the following form commute.
% https://q.uiver.app/#q=WzAsMyxbMSwwLCJBIl0sWzAsMSwiRChqKSJdLFsyLDEsIkQoaicpIl0sWzAsMSwiXFxsYW1iZGFfaiIsMl0sWzEsMiwiRChcXGFscGhhKSIsMl0sWzAsMiwiXFxsYW1iZGFfe2onfSJdXQ==
\[\begin{tikzcd}
& A \\
{D(j)} && {D(j')}
\arrow["{\lambda_j}"', from=1-2, to=2-1]
\arrow["{D(\alpha)}"', from=2-1, to=2-3]
\arrow["{\lambda_{j'}}", from=1-2, to=2-3]
\end{tikzcd}\]
\end{definition}
We can define the notion of a morphism between cones.
\begin{definition}
Let \( (A, \lambda_j), (B, \mu_j) \) be cones over a diagram \( D \) of shape \( J \) in \( \mathcal C \).
Then a \emph{morphism of cones} is a morphism \( f : A \to B \) such that all triangles of the following form commute.
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJBIl0sWzIsMCwiQiJdLFsxLDEsIkQoaikiXSxbMCwxLCJmIl0sWzEsMiwiXFxtdV9qIl0sWzAsMiwiXFxsYW1iZGFfaiIsMl1d
\[\begin{tikzcd}
A && B \\
& {D(j)}
\arrow["f", from=1-1, to=1-3]
\arrow["{\mu_j}", from=1-3, to=2-2]
\arrow["{\lambda_j}"', from=1-1, to=2-2]
\end{tikzcd}\]
\end{definition}
This makes the class of cones over a diagram \( D \) into a category, which will be denoted \( \operatorname{Cone}(D) \).
\begin{remark}
A cone over a diagram \( D \) with apex \( A \) is the same as a natural transformation from the constant diagram \( \Delta A \) to \( D \), as we can expand the commutative triangles into the following form.
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJBIl0sWzEsMCwiQSJdLFsxLDEsIkQoaicpIl0sWzAsMSwiRChqKSJdLFswLDEsIjFfQSJdLFsxLDIsIlxcbGFtYmRhX3tqJ30iXSxbMCwzLCJcXGxhbWJkYV9qIiwyXSxbMywyLCJEKFxcYWxwaGEpIiwyXV0=
\[\begin{tikzcd}
A & A \\
{D(j)} & {D(j')}
\arrow["{1_A}", from=1-1, to=1-2]
\arrow["{\lambda_{j'}}", from=1-2, to=2-2]
\arrow["{\lambda_j}"', from=1-1, to=2-1]
\arrow["{D(\alpha)}"', from=2-1, to=2-2]
\end{tikzcd}\]
Note that \( \Delta \) is a functor \( \mathcal C \to [J, \mathcal C] \), and thus \( \operatorname{Cone}(D) \) is exactly the comma category \( (\Delta \downarrow D) \).
\end{remark}

\subsection{Limits}
\begin{definition}
A \emph{limit} for a diagram \( D \) of shape \( J \) in \( \mathcal C \) is a terminal object in the category of cones over \( D \).
Dually, a \emph{colimit} for \( D \) is an initial object in the category of cones under \( D \).
\end{definition}
A cone under a diagram is often called a \emph{cocone}.
\begin{remark}
Using the fact that \( \operatorname{Cone}(D) = (\Delta \downarrow D) \) where \( \Delta : \mathcal C \to [J, \mathcal C] \), the category \( \mathcal C \) has limits for all diagrams of shape \( J \) if and only if \( \Delta \) has a right adjoint.
\end{remark}
\begin{example}
\begin{enumerate}
\item If \( J \) is the empty category, there is a unique diagram \( D \) of shape \( J \) in any category \( \mathcal C \).
Thus, a cone over this diagram is just an object in \( \mathcal C \), and morphisms of cones are just morphisms in \( \mathcal C \).
In particular, \( \operatorname{Cone}(D) \cong \mathcal C \), so a limit for \( D \) is a terminal object in \( \mathcal C \).
Dually, a colimit of the empty diagram is an initial object.
\item Let \( J \) be the discrete category with two objects.
A diagram of shape \( J \) in \( \mathcal C \) is thus a pair of objects.
A cone over this diagram is a \emph{span}.
\[\begin{tikzcd}
& C \\
A && B
\arrow[from=1-2, to=2-1]
\arrow[from=1-2, to=2-3]
\end{tikzcd}\]
A limit cone is precisely a categorical product \( A \times B \).
\[\begin{tikzcd}
& {A \times B} \\
A && B
\arrow["{\pi_1}"', from=1-2, to=2-1]
\arrow["{\pi_2}", from=1-2, to=2-3]
\end{tikzcd}\]
Similarly, the colimit for a pair of objects is a categorical coproduct \( A + B \).
\item If \( J \) is any discrete category, a diagram of shape \( J \) is a family of objects \( A_j \) in \( \mathcal C \) indexed by the objects of \( J \).
Limits and colimits over this diagram are products and coproducts of the \( A_j \).
\item If \( J \) is the category \( \bullet \rightrightarrows \bullet \), a diagram of shape \( J \) is a parallel pair of morphisms \( f, g : A \rightrightarrows B \).
A cone over such a parallel pair is
% https://q.uiver.app/#q=WzAsMyxbMSwwLCJDIl0sWzAsMSwiQSJdLFsyLDEsIkIiXSxbMCwxLCJoIiwyXSxbMCwyLCJrIl0sWzEsMiwiZiIsMCx7Im9mZnNldCI6LTJ9XSxbMSwyLCJnIiwyLHsib2Zmc2V0IjoyfV1d
\[\begin{tikzcd}
& C \\
A && B
\arrow["h"', from=1-2, to=2-1]
\arrow["k", from=1-2, to=2-3]
\arrow["f", from=2-1, to=2-3]
\arrow["g"', shift right=2, from=2-1, to=2-3]
\end{tikzcd}\]
satisfying \( fh = k = gh \).
Equivalently, it is a morphism \( h : C \to A \) satisfying \( fh = gh \).
Thus, a limit is an equaliser, and dually, a colimit is a coequaliser.
\item Let \( J \) be the category
% https://q.uiver.app/#q=WzAsMyxbMSwwLCJcXGJ1bGxldCJdLFsxLDEsIlxcYnVsbGV0Il0sWzAsMSwiXFxidWxsZXQiXSxbMCwxXSxbMiwxXV0=
\[\begin{tikzcd}
& \bullet \\
\bullet & \bullet
\arrow[from=1-2, to=2-2]
\arrow[from=2-1, to=2-2]
\end{tikzcd}\]
A diagram of shape \( J \) is thus a cospan in \( \mathcal C \).
% https://q.uiver.app/#q=WzAsMyxbMSwwLCJBIl0sWzEsMSwiQyJdLFswLDEsIkIiXSxbMCwxLCJmIl0sWzIsMSwiZyIsMl1d
\[\begin{tikzcd}
& A \\
B & C
\arrow["f", from=1-2, to=2-2]
\arrow["g"', from=2-1, to=2-2]
\end{tikzcd}\]
A cone over this diagram is
% https://q.uiver.app/#q=WzAsNCxbMSwwLCJBIl0sWzEsMSwiQyJdLFswLDEsIkIiXSxbMCwwLCJEIl0sWzAsMSwiZiJdLFsyLDEsImciLDJdLFszLDAsImgiXSxbMywxLCJcXGVsbCIsMl0sWzMsMiwiayIsMl1d
\[\begin{tikzcd}
D & A \\
B & C
\arrow["f", from=1-2, to=2-2]
\arrow["g"', from=2-1, to=2-2]
\arrow["h", from=1-1, to=1-2]
\arrow["\ell"', from=1-1, to=2-2]
\arrow["k"', from=1-1, to=2-1]
\end{tikzcd}\]
where \( \ell = fh = gk \) is redundant.
Thus a cone is a span that completes the commutative square.
A limit for the cospan is the universal way to complete this commutative square, which is called a \emph{pullback} of \( f \) and \( g \).
Dually, colimits of spans are called \emph{pushouts}.
\end{enumerate}
\end{example}
2 changes: 2 additions & 0 deletions iii/cat/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -16,5 +16,7 @@ \section{The Yoneda lemma}
\input{02_yoneda_lemma.tex}
\section{Adjunctions}
\input{03_adjunctions.tex}
\section{Limits}
\input{04_limits.tex}

\end{document}
Loading

0 comments on commit e983e5a

Please sign in to comment.