Skip to content

Commit

Permalink
Lectures 21B
Browse files Browse the repository at this point in the history
  • Loading branch information
zeramorphic committed Nov 22, 2023
1 parent 25908e0 commit dbd5a1d
Show file tree
Hide file tree
Showing 7 changed files with 327 additions and 41 deletions.
75 changes: 73 additions & 2 deletions iii/alggeom/06_divisors.tex
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@ \subsection{Height and dimension}
In the case of Weil divisors, we will assume that the ambient scheme \( X \) is Noetherian, integral, separated, and \emph{regular in codimension 1}.

If \( X \) is integral and \( U = \Spec A \) is an open affine, then the ideal \( (0) \subseteq A \) is called the \emph{generic point} of \( X \).
The generic points given by each \( U \) coincide in \( X \).
Each open affine is dense as they are irreducible, so they have a nontrivial intersection, including their generic points.
The generic points given by each \( U \) therefore coincide in \( X \).
This point is often denoted by \( \eta \) or \( \eta_X \).
\begin{definition}
Let \( X \) be a scheme.
Expand Down Expand Up @@ -43,8 +44,78 @@ \subsection{Weil divisors}
If \( X \) is integral, for \( \Spec A = U \subseteq X \), the local ring \( \mathcal O_{X, \eta} \) is a field, as it is in particular the fraction field of \( A \).
Indeed, because \( \eta \) is contained in every open affine, \( \mathcal O_{X, \eta} \) permits arbitrary denominators.

Let \( f \in \mathcal O_{X, \eta_X} = k(X) \).
Let \( f \in \mathcal O_{X, \eta_X} = k(X) \) be nonzero.
Since for every prime divisor \( Y \subseteq X \), the ring \( \mathcal O_{X, \eta_Y} \) is a discrete valuation ring, we can calculate the valuation \( \nu_Y(f) \) of \( f \) in this ring.
We thus define the divisor
\[ \operatorname{div}(f) = \sum_{Y \subseteq X \text{ prime}} \nu_Y(f) [Y] \]
We claim that this is a Weil divisor; that is, the sum is finite.
\begin{proposition}
The sum
\[ \sum_{Y \subseteq X \text{ prime}} \nu_Y(f) [Y] \]
is finite.
\end{proposition}
\begin{proof}
Let \( f \in k(X)^\times \), and choose \( A \) such that \( U = \Spec A \) is an affine open, so \( FF(A) = k(X) \).
We can also require that \( f \in A \) by localising at the denominator, so \( f \) is \emph{regular} on \( U \).
Then \( X \setminus U \) is closed and of codimension at least 1, so only finitely many prime Weil divisors \( Y \) of \( X \) are contained in \( X \setminus U \).
On \( U \), as \( f \) is regular, \( \nu_Y(f) \geq 0 \) for all \( Y \).
But \( \nu_Y(f) > 0 \) if and only if \( Y \) is contained in \( \mathbb V(f) \subseteq U \), and by the same argument, there are only finitely many such \( Y \).
\end{proof}
\begin{definition}
A Weil divisor of the form \( \operatorname{div}(f) \) is called \emph{principal}.
\end{definition}
In \( \operatorname{Div}(X) \), the set of principal divisors form a subgroup \( \operatorname{Prin}(X) \), and we define the \emph{Weil divisor class group} of \( X \) to be
\[ \operatorname{Cl}(X) = \faktor{\operatorname{Div}(X)}{\operatorname{Prin}(X)} \]
\begin{remark}
\begin{enumerate}
\item Let \( A \) be a Noetherian domain.
Then \( A \) is a unique factorisation domain if and only if \( A \) is integrally closed and \( \operatorname{Cl}(\Spec A) \) is trivial.
This is related to the fact that in unique factorisation domains, all primes of height 1 are principal.
In particular, there exist rings with nontrivial class groups of their spectra.
\item \( \operatorname{Cl}(\mathbb A^n_k) = 0 \).
\item \( \operatorname{Cl}(\mathbb P^n_k) \cong \mathbb Z \); we will prove this shortly.
% TODO: break here, organise into props/proofs
\item Let \( Z \subseteq X \) is closed, and let \( U = X \setminus Z \).
Then there is a surjective map \( \operatorname{Cl}(X) \twoheadrightarrow \operatorname{Cl}(U) \), defined by \( [Y] \mapsto [Y \cap U] \), but instead mapping \( [Y] \) to zero if \( Y \cap U = \varnothing \).
This is well-defined, as \( k(X) \) and \( k(U) \) are naturally isomorphic, so principal divisors are mapped to principal divisors.
For surjectivity, note that given a prime Weil divisor \( D \subseteq U \), its closure \( \overline D \) in \( X \) is a prime Weil divisor that restricts to \( D \) under the map.
\item If \( Z \) has codimension at least 2, then \( \operatorname{Cl}(X) \twoheadrightarrow \operatorname{Cl}(U) \) is an isomorphism.
This is because \( Z \) does not enter the definition of \( \operatorname{Cl}(X) \).
\item If \( Z \subseteq X \) is integral, closed, and of codimension 1, there is an exact sequence
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXG1hdGhiYiBaIl0sWzEsMCwiXFxvcGVyYXRvcm5hbWV7Q2x9KFgpIl0sWzIsMCwiXFxvcGVyYXRvcm5hbWV7Q2x9KFUpIl0sWzMsMCwiMCJdLFswLDEsIjEgXFxtYXBzdG8gW1pdIl0sWzEsMl0sWzIsM11d
\[\begin{tikzcd}
{\mathbb Z} & {\operatorname{Cl}(X)} & {\operatorname{Cl}(U)} & 0
\arrow["{1 \mapsto [Z]}", from=1-1, to=1-2]
\arrow[from=1-2, to=1-3]
\arrow[from=1-3, to=1-4]
\end{tikzcd}\]
called the \emph{excision} exact sequence.
Indeed, the kernel of \( \operatorname{Cl}(X) \to \operatorname{Cl}(U) \) are exactly the divisors in \( X \) contained in \( Z \).
\end{enumerate}
\end{remark}
\begin{proposition}
Let \( k \) be a field.
Then, \( \operatorname{Cl}(\mathbb P^n_k) \cong \mathbb Z \).
\end{proposition}
\begin{proof}
Let \( D \subseteq \mathbb P^n \) be integral, closed, and of codimension 1.
Then \( D = \mathbb V(f) \) where \( f \) is homogeneous of some degree \( d \); we will define \( \deg(D) = d \).
We extend linearly to obtain a homomorphism \( \deg : \operatorname{Div}(\mathbb P^n_k) \to \mathbb Z \).
We claim that this gives an isomorphism \( \operatorname{Cl}(\mathbb P^n_k) \to \mathbb Z \).
First, this is well defined on classes, since if \( f = \frac{g}{h} \) is a rational function, then \( g \) and \( h \) are homogeneous polynomials of the same degree, so \( \deg(\operatorname{div}(f)) = 0 \).
This is surjective, by taking \( H = \mathbb V(x_0) \) for \( x_0 \) homogeneous linear.
For injectivity, suppose \( D = \sum n_{Y_i} [Y_i] \) with \( \sum n_{Y_i} \deg(Y_i) = 0 \).
Write \( Y_i = \mathbb V(g_i) \), and let \( f = \prod g_i^{n_{Y_i}} \).
Now \( f \) is a homogeneous rational function of degree zero.
\end{proof}

\subsection{Cartier divisors}
Let \( X \) be a scheme.
Consider the presheaf on \( X \) given by mapping \( U = \Spec A \) to \( S^{-1}A \) where \( S \) is the set of all elements that are not zero divisors.
Sheafification yields the sheaf of rings \( \mathcal K_X \).
Define \( \mathcal K_X^\star \subseteq \mathcal K_X \) to be the subsheaf of invertible elements; this is a sheaf of abelian groups under multiplication.
Similarly, let \( \mathcal O_X^\star \subseteq \mathcal O_X \) be the subsheaf of invertible elements.
Thus, every section of \( \faktor{\mathcal K_X^\star}{\mathcal O_X^\star} \) can be prescribed by \( \qty{(U_i, f_i)} \) where \( U_i \) is a cover of \( X \), \( f_i \) is a section of \( \mathcal K_X^\star(U_i) \), and that on \( U_i \cap U_j \), the ratio \( \faktor{f_i}{f_j} \) lies in \( \mathcal O_X^\star(U_i \cap U_j) \).
\begin{definition}
A \emph{Cartier divisor} is a section of the sheaf \( \faktor{\mathcal K_X^\star}{\mathcal O_X^\star} \).
\end{definition}
101 changes: 101 additions & 0 deletions iii/cat/06_monoidal_and_enriched_categories.tex
Original file line number Diff line number Diff line change
Expand Up @@ -294,3 +294,104 @@ \subsection{Closed monoidal categories}
Then \( S \subseteq (R \Rightarrow T) \) if and only if \( S \circ R \subseteq T \).
\end{enumerate}
\end{example}

\subsection{Enriched categories}
\begin{definition}
Let \( (\mathcal E, \otimes, I) \) be a monoidal category.
An \emph{\( \mathcal E \)-enriched category} is
\begin{enumerate}
\item a collection \( \ob \mathcal C \) of objects;
\item an object \( \mathcal C(A, B) \) of \( \mathcal E \) for each pair of objects \( A, B \in \ob \mathcal C \);
\item morphisms \( \iota_A : I \to \mathcal C(A, A) \) for each \( A \);
\item morphisms \( \kappa_{A,B,C} : \mathcal C(B, C) \otimes \mathcal C(A, B) \to \mathcal C(A, C) \) for objects \( A, B, C \),
\end{enumerate}
such that the following diagrams commute.
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJJIFxcb3RpbWVzIFxcbWF0aGNhbCBDKEEsIEIpIl0sWzEsMCwiXFxtYXRoY2FsIEMoQiwgQikgXFxvdGltZXMgXFxtYXRoY2FsIEMoQSwgQikiXSxbMSwxLCJcXG1hdGhjYWwgQyhBLCBCKSJdLFswLDEsIlxcaW90YV9CIFxcb3RpbWVzIDFfe1xcbWF0aGNhbCBDKEEsIEIpfSJdLFsxLDIsIlxca2FwcGFfe0EsQixCfSJdLFswLDIsIlxcbGFtYmRhX3tcXG1hdGhjYWwgQyhBLCBCKX0iLDJdXQ==
\[\begin{tikzcd}
{I \otimes \mathcal C(A, B)} & {\mathcal C(B, B) \otimes \mathcal C(A, B)} \\
& {\mathcal C(A, B)}
\arrow["{\iota_B \otimes 1_{\mathcal C(A, B)}}", from=1-1, to=1-2]
\arrow["{\kappa_{A,B,B}}", from=1-2, to=2-2]
\arrow["{\lambda_{\mathcal C(A, B)}}"', from=1-1, to=2-2]
\end{tikzcd}\]
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJcXG1hdGhjYWwgQyhBLCBCKSBcXG90aW1lcyBJIl0sWzEsMCwiXFxtYXRoY2FsIEMoQSwgQikgXFxvdGltZXMgXFxtYXRoY2FsIEMoQSwgQSkiXSxbMSwxLCJcXG1hdGhjYWwgQyhBLCBCKSJdLFswLDEsIlxcaW90YV9CIFxcb3RpbWVzIDFfe1xcbWF0aGNhbCBDKEEsIEIpfSJdLFsxLDIsIlxca2FwcGFfe0EsQSxCfSJdLFswLDIsIlxccmhvX3tcXG1hdGhjYWwgQyhBLCBCKX0iLDJdXQ==
\[\begin{tikzcd}
{\mathcal C(A, B) \otimes I} & {\mathcal C(A, B) \otimes \mathcal C(A, A)} \\
& {\mathcal C(A, B)}
\arrow["{\iota_B \otimes 1_{\mathcal C(A, B)}}", from=1-1, to=1-2]
\arrow["{\kappa_{A,A,B}}", from=1-2, to=2-2]
\arrow["{\rho_{\mathcal C(A, B)}}"', from=1-1, to=2-2]
\end{tikzcd}\]
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIoXFxtYXRoY2FsIEMoQywgRCkgXFxvdGltZXMgXFxtYXRoY2FsIEMoQiwgQykpIFxcb3RpbWVzIFxcbWF0aGNhbCBDKEEsIEIpIl0sWzEsMCwiXFxtYXRoY2FsIEMoQiwgRCkgXFxvdGltZXMgXFxtYXRoY2FsIEMoQSwgQikiXSxbMiwxLCJcXG1hdGhjYWwgQyhBLCBEKSJdLFswLDIsIlxcbWF0aGNhbCBDKEMsIEQpIFxcb3RpbWVzIChcXG1hdGhjYWwgQyhCLCBDKSBcXG90aW1lcyBcXG1hdGhjYWwgQyhBLCBCKSkiXSxbMSwyLCJcXG1hdGhjYWwgQyhDLCBEKSBcXG90aW1lcyBcXG1hdGhjYWwgQyhBLCBDKSJdLFswLDEsIlxca2FwcGEgXFxvdGltZXMgMSJdLFsxLDIsIlxca2FwcGEiXSxbMCwzLCJcXGFscGhhIiwyXSxbMyw0LCIxIFxcb3RpbWVzIFxca2FwcGEiLDJdLFs0LDIsIlxca2FwcGEiLDJdXQ==
\[\begin{tikzcd}
{(\mathcal C(C, D) \otimes \mathcal C(B, C)) \otimes \mathcal C(A, B)} & {\mathcal C(B, D) \otimes \mathcal C(A, B)} \\
&& {\mathcal C(A, D)} \\
{\mathcal C(C, D) \otimes (\mathcal C(B, C) \otimes \mathcal C(A, B))} & {\mathcal C(C, D) \otimes \mathcal C(A, C)}
\arrow["{\kappa \otimes 1}", from=1-1, to=1-2]
\arrow["\kappa", from=1-2, to=2-3]
\arrow["\alpha"', from=1-1, to=3-1]
\arrow["{1 \otimes \kappa}"', from=3-1, to=3-2]
\arrow["\kappa"', from=3-2, to=2-3]
\end{tikzcd}\]
\end{definition}
\begin{definition}
Let \( \mathcal C, \mathcal D \) be \( \mathcal E \)-enriched categories.
An \emph{\( \mathcal E \)-enriched functor} \( \mathcal C \to \mathcal D \) consists of a map of objects \( F : \ob \mathcal C \to \ob \mathcal D \) together with morphisms \( F_{A,B} : \mathcal C(A, B) \to \mathcal D(FA, FB) \) for each pair of objects \( A, B \in \ob \mathcal C \), in such a way that is compatible with identities and composition.
\end{definition}
\begin{definition}
Let \( F, G : \mathcal C \rightrightarrows \mathcal D \) be \( \mathcal E \)-enriched functors between \( \mathcal E \)-enriched categories.
An \emph{\( \mathcal E \)-enriched natural transformation} \( F \to G \) assigns a morphism \( \theta_A : I \to \mathcal D(FA, GA) \) to each \( A \in \ob \mathcal C \), satisfying the naturality condition
% https://q.uiver.app/#q=WzAsOCxbMCwwLCJcXG1hdGhjYWwgQyhBLCBCKSJdLFsxLDAsIlxcbWF0aGNhbCBEKEZBLCBGQikiXSxbMiwwLCJJIFxcb3RpbWVzIEQoRkEsIEZCKSJdLFsyLDEsIlxcbWF0aGNhbCBEKEZCLCBHQikgXFxvdGltZXMgXFxtYXRoY2FsIEQoRkEsIEZCKSJdLFsyLDIsIlxcbWF0aGNhbCBEKEZBLCBHQikiXSxbMCwxLCJcXG1hdGhjYWwgRChHQSwgR0IpIl0sWzAsMiwiXFxtYXRoY2FsIEQoR0EsIEdCKSBcXG90aW1lcyBJIl0sWzEsMiwiXFxtYXRoY2FsIEQoR0EsIEdCKSBcXG90aW1lcyBcXG1hdGhjYWwgRChGQSwgR0EpIl0sWzAsMSwiRl97QSxCfSJdLFsxLDIsIlxcbGFtYmRhXnstMX0iXSxbMiwzLCJcXHRoZXRhX0IgXFxvdGltZXMgMSJdLFszLDQsIlxca2FwcGEiXSxbMCw1LCJHX3tBLEJ9IiwyXSxbNSw2LCJcXHJob157LTF9IiwyXSxbNiw3LCIxIFxcb3RpbWVzIFxcdGhldGFfQSIsMl0sWzcsNCwiXFxrYXBwYSIsMl1d
\[\begin{tikzcd}
{\mathcal C(A, B)} & {\mathcal D(FA, FB)} & {I \otimes D(FA, FB)} \\
{\mathcal D(GA, GB)} && {\mathcal D(FB, GB) \otimes \mathcal D(FA, FB)} \\
{\mathcal D(GA, GB) \otimes I} & {\mathcal D(GA, GB) \otimes \mathcal D(FA, GA)} & {\mathcal D(FA, GB)}
\arrow["{F_{A,B}}", from=1-1, to=1-2]
\arrow["{\lambda^{-1}}", from=1-2, to=1-3]
\arrow["{\theta_B \otimes 1}", from=1-3, to=2-3]
\arrow["\kappa", from=2-3, to=3-3]
\arrow["{G_{A,B}}"', from=1-1, to=2-1]
\arrow["{\rho^{-1}}"', from=2-1, to=3-1]
\arrow["{1 \otimes \theta_A}"', from=3-1, to=3-2]
\arrow["\kappa"', from=3-2, to=3-3]
\end{tikzcd}\]
\end{definition}
If \( \mathcal C \) is an \( \mathcal E \)-enriched category, its \emph{underlying ordinary category} \( \abs{\mathcal C} \) is the category where the objects are those of \( \mathcal C \), the morphisms \( A \to B \) are the morphisms \( I \to \mathcal C(A, B) \) in \( \mathcal E \), where the identity morphisms are given by \( \iota_A \), and the composition of \( g : C \to B \) and \( f : A \to B \) given by
\[\begin{tikzcd}
I & {I \otimes I} & {\mathcal C(B, C) \otimes \mathcal C(A, B)} & {\mathcal C(A, C)}
\arrow["{\lambda_I^{-1}}", from=1-1, to=1-2]
\arrow["{g \otimes f}", from=1-2, to=1-3]
\arrow["\kappa", from=1-3, to=1-4]
\end{tikzcd}\]
One can check that this indeed forms a category.
An \emph{\( \mathcal E \)-enrichment} of an ordinary category \( \mathcal C_0 \) is an \( \mathcal E \)-enriched category \( \mathcal C \) such that \( \abs{\mathcal C} \cong \mathcal C_0 \).
\begin{example}
\begin{enumerate}
\item A category enriched over \( (\mathbf{Set}, \times, 1) \) is a locally small category.
\item A category enriched over the poset \( 2 = \qty{0,1} \) with \( 0 < 1 \) is a preorder.
\item A category enriched over \( (\mathbf{Cat}, \times, \mathbf{1}) \) is a \emph{2-category}.
Its morphisms or \emph{1-arrows} \( A \to B \) are the objects of a category \( \mathcal C(A, B) \).
It has \emph{2-arrows} between parallel pairs \( f, g : A \rightrightarrows B \), which are the morphisms \( f \to g \) in the category \( \mathcal C(A, B) \).
\( \mathbf{Cat} \) is a 2-category, by taking the 2-arrows to be the natural transformations.
The category of small \( \mathcal E \)-enriched categories with \( \mathcal E \)-enriched functors is a 2-category.
\item A category enriched over \( (\mathbf{AbGp}, \otimes, \mathbb Z) \) is an \emph{additive category}.
\item If \( \mathcal E \) is a right closed monoidal category, it has a canonical enrichment structure over itself.
Take \( \mathcal E(A, B) \) to be \( [A, B] \), where \( [A, -] \) is the right adjoint of \( (-) \otimes A \).
The identity \( I \to [A, A] \) is the transpose \( \lambda_A : I \otimes A \to A \), and the composition \( \kappa \) is the transpose of
% https://q.uiver.app/#q=WzAsNCxbMCwwLCIoW0IsIENdIFxcb3RpbWVzIFtBLCBCXSkgXFxvdGltZXMgQSJdLFsxLDAsIltCLENdIFxcb3RpbWVzIChbQSxCXSBcXG90aW1lcyBBKSJdLFsyLDAsIltCLENdIFxcb3RpbWVzIEIiXSxbMywwLCJDIl0sWzAsMSwiXFxhbHBoYSJdLFsxLDIsIjEgXFxvdGltZXMgXFxtYXRocm17ZXZ9Il0sWzIsMywiXFxtYXRocm17ZXZ9Il1d
\[\begin{tikzcd}
{([B, C] \otimes [A, B]) \otimes A} & {[B,C] \otimes ([A,B] \otimes A)} & {[B,C] \otimes B} & C
\arrow["\alpha", from=1-1, to=1-2]
\arrow["{1 \otimes \mathrm{ev}}", from=1-2, to=1-3]
\arrow["{\mathrm{ev}}", from=1-3, to=1-4]
\end{tikzcd}\]
where \( \mathrm{ev} \) is the evaluation map, which is precisely the counit of the adjunction.
\item A one-object \( \mathcal E \)-enriched category is an \emph{(internal) monoid} in \( \mathcal E \); it consists of an object \( M \) of \( \mathcal E \), equipped with morphisms \( e : I \to M \) and \( m : M \otimes M \to M \) satisfying the left and right unit laws and the associativity law.
\begin{enumerate}
\item An internal monoid in \( \mathbf{Set} \) is a monoid.
\item An internal monoid in \( \mathbf{AbGp} \) is a ring.
\item An internal monoid in \( \mathbf{Cat} \) is a strict monoidal category.
\item An internal monoid in \( [\mathcal C, \mathcal C] \) is a monad on \( \mathcal C \).
\end{enumerate}
\end{enumerate}
\end{example}
25 changes: 25 additions & 0 deletions iii/cat/07_additive_and_abelian_categories.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
\subsection{Additive categories}
In this section, we will study categories enriched over \( (\mathbf{AbGp}, \otimes, \mathbb Z) \); these are called \emph{additive} categories.
We will also consider other weaker enrichments: a category enriched over \( (\mathbf{Set}_\star, \wedge, 2) \) is called \emph{pointed}, and a category enriched over \( (\mathbf{CMon}, \otimes, \mathbb N) \), where \( \mathbf{CMon} \) is the category of commutative monoids, is called \emph{semi-additive}.

In a pointed category \( \mathcal C \), each \( \mathcal C(A, B) \) has a distinguished element 0, and all composites with zero morphisms are zero morphisms.
In a semi-additive category \( \mathcal C \), each \( \mathcal C(A, B) \) has a binary addition operation which is associative, commutative, and has an identity \( 0 \).
Composition in a semi-additive category is bilinear, so \( (f + g)(h + k) = fh + gh + fk + gk \) whenever the composites are defined.
In an additive category, each morphism \( f \in \mathcal C(A, B) \) has an additive inverse \( -f \in \mathcal C(A, B) \).
\begin{lemma}
\begin{enumerate}
\item For an object \( A \) in a pointed category \( \mathcal C \), the following are equivalent.
\begin{enumerate}
\item \( A \) is a terminal object of \( \mathcal C \).
\item \( A \) is an initial object of \( \mathcal C \).
\item \( 1_A = 0 : A \to A \).
\end{enumerate}
\item For objects \( A, B, C \) in a semi-additive category \( \mathcal C \), the following are equivalent.
\begin{enumerate}
\item there exist morphisms \( \pi_1 : C \to A \) and \( \pi_2 : C \to B \) making \( C \) into a product of \( A \) and \( B \);
\item there exist morphisms \( \nu_1 : A \to C \) and \( \nu_2 : B \to C \) making \( C \) into a coproduct of \( A \) and \( B \);
\item there exist morphisms \( \pi_1 : C \to A, \pi_2 : C \to B, \nu_1 : A \to C, \nu_2 : B \to C \) satisfying
\[ \pi_1 \nu_1 = 1_A;\quad \pi_2 \nu_2 = 1_B;\quad \pi_1 \nu_2 = 0;\quad \pi_2 \nu_1 = 0;\quad \nu_1 \pi_1 + \nu_2 \pi_1 = 1_C \]
\end{enumerate}
\end{enumerate}
\end{lemma}
2 changes: 2 additions & 0 deletions iii/cat/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -22,5 +22,7 @@ \section{Monads}
\input{05_monads.tex}
\section{Monoidal and enriched categories}
\input{06_monoidal_and_enriched_categories.tex}
\section{Additive and abelian categories}
\input{07_additive_and_abelian_categories.tex}

\end{document}
Loading

0 comments on commit dbd5a1d

Please sign in to comment.