Skip to content

Commit

Permalink
Some more proofs
Browse files Browse the repository at this point in the history
Signed-off-by: zeramorphic <[email protected]>
  • Loading branch information
zeramorphic committed Oct 17, 2023
1 parent 9508ab9 commit bb135dc
Show file tree
Hide file tree
Showing 2 changed files with 42 additions and 5 deletions.
2 changes: 1 addition & 1 deletion iii/cat/02_yoneda_lemma.tex
Original file line number Diff line number Diff line change
Expand Up @@ -292,7 +292,7 @@ \subsection{Separating and detecting families}
A & B & D
\arrow["\ell", shift left=2, from=2-2, to=2-3]
\arrow["m"', shift right=2, from=2-2, to=2-3]
\arrow["f", from=2-1, to=2-2]
\arrow["f"', from=2-1, to=2-2]
\arrow["n", from=1-2, to=2-2]
\arrow[dashed, from=1-2, to=2-1]
\end{tikzcd}\]
Expand Down
45 changes: 41 additions & 4 deletions iii/commalg/02_tensor_products.tex
Original file line number Diff line number Diff line change
Expand Up @@ -718,15 +718,13 @@ \subsection{Exactness properties of the tensor product}
from the category of \( R \)-modules to itself given by
\[ T_M(N) = M \otimes_R N;\quad T_M(N \xrightarrow f N') = \id_M \otimes f \]
We intend to show that if
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJBIl0sWzEsMCwiQiJdLFsyLDAsIkMiXSxbMywwLCIwIl0sWzAsMSwiZiJdLFsxLDIsImciXSxbMiwzXV0=
\[\begin{tikzcd}
A & B & C & 0
\arrow["f", from=1-1, to=1-2]
\arrow["g", from=1-2, to=1-3]
\arrow[from=1-3, to=1-4]
\end{tikzcd}\]
is an exact sequence of \( R \)-modules, then
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJNIFxcb3RpbWVzX1IgQSJdLFsxLDAsIk0gXFxvdGltZXNfUiBCIl0sWzIsMCwiTSBcXG90aW1lc19SIEMiXSxbMywwLCIwIl0sWzAsMSwiXFxpZF9NIFxcb3RpbWVzIGYiXSxbMSwyLCJcXGlkX00gXFxvdGltZXMgZyJdLFsyLDNdXQ==
\[\begin{tikzcd}
{M \otimes_R A} & {M \otimes_R B} & {M \otimes_R C} & 0
\arrow["{T_M(f)}", from=1-1, to=1-2]
Expand All @@ -744,7 +742,11 @@ \subsection{Exactness properties of the tensor product}
\end{definition}
\begin{definition}
Let \( Q, P \) be \( R \)-modules.
Then \( \Hom_R(Q, -) \) and \( \Hom_R(-, P) \) are functors \( \mathbf{Mod}_R \to \mathbf{Mod}_R \), with action on morphisms \( f : N' \to N \) given by
Then
\[ \Hom_R(Q, -) : \mathbf{Mod}_R \to \mathbf{Mod}_R \]
and
\[ \Hom_R(-, P) : \mathbf{Mod}_R^\cop \to \mathbf{Mod}_R \]
are functors, with action on morphisms \( f : N' \to N \) given by
\[ \Hom_R(Q, f)(\varphi) = f \circ \varphi = f_\star(\varphi) : \Hom_R(Q, N') \to \Hom_R(Q, N') \]
and
\[ \Hom_R(f, P)(\varphi) = \varphi \circ f = f^\star(\varphi) : \Hom_R(N, Q) \to \Hom_R(N', Q) \]
Expand All @@ -767,6 +769,22 @@ \subsection{Exactness properties of the tensor product}
\end{tikzcd}\]
Thus, the covariant hom-functor is \emph{left exact}.
\end{proposition}
\begin{proof}
First, we show \( f_\star \) is injective.
Suppose \( f_\star(\varphi) = 0 \), so \( f \circ \varphi = 0 \).
Then as \( f \) is injective, \( f(\varphi(x)) = 0 \) implies \( \varphi(x) = 0 \), giving \( \varphi = 0 \) as required.

Now consider \( \varphi : Q \to A \).
Then
\[ g_\star (f_\star(\varphi)) = g \circ (f \circ \varphi) = (g \circ f) \circ \varphi = 0 \circ \varphi = 0 \]
so \( \Im f_\star \subseteq \ker g_\star \).
Now suppose \( \varphi : Q \to B \) has \( g_\star(\varphi) = g \circ \varphi = 0 \).
So for all \( x \in Q \), \( g(\varphi(x)) = 0 \).
By exactness of the original sequence, \( \varphi(x) \in \Im f \).
As \( f \) is injective, \( \varphi(x) \) has a unique preimage \( \psi(x) \) under \( f \).
As \( f \) is \( R \)-linear, so is \( \psi : Q \to A \).
Hence \( f_\star(\psi) = \varphi \) as required.
\end{proof}
\begin{proposition}
Suppose
\[\begin{tikzcd}
Expand All @@ -785,6 +803,25 @@ \subsection{Exactness properties of the tensor product}
\end{tikzcd}\]
Thus, the contravariant hom-functor is also left-exact.
\end{proposition}
\begin{proof}
First, we show \( g^\star \) is injective.
Suppose \( g^\star(\varphi) = 0 \), so \( \varphi \circ g = 0 \).
As \( g \) is surjective, we must have \( \varphi = 0 \).

Now consider \( \varphi : C \to P \).
Then
\[ f^\star(g^\star(\varphi)) = (\varphi \circ g) \circ f = \varphi \circ (g \circ f) = \varphi \circ 0 = 0 \]
so \( \Im g^\star \subseteq \ker f^\star \).
Now suppose \( \varphi : B \to P \) has \( f^\star(\varphi) = \varphi \circ f = 0 \).
So for all \( x \in A \), \( \varphi(f(x)) = 0 \).
Define \( \psi : C \to P \) by
\[ \psi(g(x)) = \varphi(x) \]
We show this is well-defined.
If \( g(x) = g(y) \), then \( g(x - y) = 0 \), so \( x - y = f(a) \) for some \( a \in A \).
But then \( \varphi(f(a)) = 0 \), so \( \varphi(x) = \varphi(y) \).
As \( \varphi \) and \( g \) are ring homomorphisms, so is \( \psi \).
Hence \( g^\star(\psi) = \varphi \) as required.
\end{proof}
\begin{lemma}
Consider a sequence of \( R \)-modules
\[\begin{tikzcd}
Expand Down Expand Up @@ -819,7 +856,7 @@ \subsection{Exactness properties of the tensor product}
\[ \id_C \mapsto \id_C \circ g \mapsto \id_C \circ g \circ f \]
By exactness, \( \id_C \) must be mapped to zero under \( f^\star \circ g^\star \), so \( g \circ f = 0 \).
Hence \( \Im f \subseteq \ker g \).

Now, take \( P = \faktor{B}{\Im f} = \coker f \).
\[\begin{tikzcd}
{\Hom_R\qty(C, \faktor{B}{\Im f})} & {\Hom_R\qty(B, \faktor{B}{\Im f})} & {\Hom_R\qty(A, \faktor{B}{\Im f})}
Expand Down

0 comments on commit bb135dc

Please sign in to comment.