Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
zeramorphic committed Feb 16, 2024
2 parents 0ccbc6d + 50fc6a5 commit 9e00cbb
Show file tree
Hide file tree
Showing 2 changed files with 253 additions and 1 deletion.
167 changes: 166 additions & 1 deletion iii/forcing/03_forcing.tex
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,11 @@ \subsection{Forcing posets}
The notation \( \mathbb P \in M \) abbreviates \( (\mathbb P, \leq_{\mathbb P}, \Bbbone_{\mathbb P}) \in M \).
Note that by transitivity if \( \mathbb P \) is an element of \( M \), then \( \Bbbone_{\mathbb P} \in M \), but we do not necessarily have \( \leq_{\mathbb P} \in M \).
\begin{definition}
A preorder is \emph{separative} if whenever \( q \nleq p \), there is \( r \leq q \) such that \( r \perp p \).
A preorder is \emph{separative} if whenever \( p \neq q \), exactly one of the following two cases holds:
\begin{enumerate}
\item \( q \leq p \) and \( p \nleq q \); or
\item there exists \( r \leq q \) such that \( r \perp p \).
\end{enumerate}
\end{definition}
\begin{proposition}
If \( (\mathbb P, \leq) \) is a separative preorder, it is a partial order.
Expand Down Expand Up @@ -223,3 +227,164 @@ \subsection{Dense sets and genericity}
Finally, let \( G = \qty{r \in \mathbb P \mid \exists n.\, q_n \leq r} \).
Then \( G \) is a filter as the \( q_n \) form a chain, and it is clearly generic.
\end{proof}
\begin{definition}
A condition \( p \in \mathbb P \) is \emph{minimal} if whenever \( q \leq p \), we have \( q = p \).
\end{definition}
\begin{lemma}
Let \( M \) be a countable transitive model of \( \mathsf{ZF} \), and let \( \mathbb P \in M \) be a separative partial order.
Then either \( \mathbb P \) has a minimal element, or for every filter \( G \) which is \( \mathbb P \)-generic over \( M \), we have \( G \notin M \).
\end{lemma}
\begin{proof}
Suppose \( \mathbb P \) has no minimal element.
Let \( G \) be a \( \mathbb P \)-generic filter over \( M \).
We show that if \( F \subseteq \mathbb P \) is a filter in \( M \), then the set \( D_F = \mathbb P \setminus F \in M \) is a dense set.
Then \( G \cap D_F \) is nonempty for all filters \( F \), so \( G \) cannot be equal to any filter \( F \in M \).

Fix \( p \in \mathbb P \).
If \( p \notin F \), then \( p \in D_F \) as required.
Otherwise, suppose \( p \in F \).
As \( p \) is not minimal, we can fix some \( q \in F \) with \( q < p \).
Then \( p \nleq q \), so by separativity, there is \( r \leq p \) such that \( r \perp q \).
But all conditions in \( F \) are compatible, so one of \( r \) and \( q \) is not in \( F \).
\end{proof}
\begin{proposition}
For sets \( I, J \) such that \( \abs{I} \geq \omega \) and \( \abs{J} \geq 2 \), the forcing poset \( \operatorname{Fn}(I, J) \) is a separative partial order without a minimal element.
\end{proposition}
\begin{proposition}
(\( \mathsf{ZFC} \))
Let \( \mathbb P \in M \) be a forcing poset, and let \( G \subseteq \mathbb P \).
Then the following are equivalent.
\begin{enumerate}
\item \( G \) is \( \mathbb P \)-generic over \( M \), that is, for all dense sets \( D \in M \), we have \( G \cap D \neq \varnothing \);
\item for all \( p \in G \) and \( D \in M \), if \( D \) is dense below \( p \) in \( \mathbb P \), then \( G \cap D \neq \varnothing \);
\item for all open dense sets \( D \in M \), we have \( G \cap D \neq \varnothing \);
\item for all \( D \in M \) that are maximal antichains in \( \mathbb P \), we have \( G \cap D \neq \varnothing \).
\end{enumerate}
\end{proposition}

\subsection{Names}
\begin{definition}
Let \( \mathbb P \) be a forcing poset.
We define the class of \emph{\( \mathbb P \)-names} \( M^{\mathbb P} \) recursively as follows.
\begin{enumerate}
\item \( M_0^{\mathbb P} = \varnothing \);
\item \( M_{\alpha + 1}^{\mathbb P} = \mathcal P^M(\mathbb P \times M_\alpha^{\mathbb P}) \);
\item at limit stages \( \lambda \), \( M_\lambda^{\mathbb P} = \bigcup_{\alpha < \lambda} M_\alpha^{\mathbb P} \);
\item \( M^{\mathbb P} = \bigcup_{\alpha \in \mathrm{Ord}} \mathbb M_\alpha^{\mathbb P} \).
\end{enumerate}
\end{definition}
Being a \( \mathbb P \)-name is absolute for transitive models.
\( \mathbb P \)-names are denoted with overdots, such as in \( \dot x \).
\begin{definition}
The \emph{range} of a \( \mathbb P \)-name \( \dot x \) is
\[ \operatorname{ran}(\dot x) = \qty{\dot y \mid \exists p \in \mathbb P \mid \langle p, \dot y \rangle \in \dot x} \]
\end{definition}
\begin{remark}
Alternatively, by transfinite recursion on rank, we could define the class of \( \mathbb P \)-names over \( \mathrm{V} \) in the following way.
If \( \rank x = \alpha \), then \( x \) is a \( \mathbb P \)-name if and only if it is a relation such that for all \( \langle p, \dot y \rangle \in x \), we have \( p \in \mathbb P \) and \( \dot y \) is a \( \mathbb P \)-name in \( \mathrm{V}_\alpha \).
Finally, \( M^{\mathbb P} = \mathrm{V}^{\mathbb P} \cap M \).
\end{remark}
\begin{definition}
The \emph{\( \mathbb P \)-rank} of a name \( \dot x \), written \( \rank_{\mathbb P} \dot x \), is the least \( \alpha \) such that \( \dot x \subseteq \mathbb P \times M_\alpha^{\mathbb P} \).
\end{definition}
\begin{definition}
Let \( \dot x \) be a \( \mathbb P \)-name and \( G \) be an arbitrary subset of \( \mathbb P \).
We define the \emph{interpretation of \( \dot x \) by \( G \)} recursively by
\[ \dot x^G = \qty{\dot y^G \mid \exists p \in G.\, \langle p, \dot y \rangle \in \dot x} \]
\end{definition}
\begin{definition}
The \emph{forcing extension of \( M \) by \( G \)}, written \( M[G] \), is
\[ M[G] = \qty{\dot x^G \mid \dot x \in M^{\mathbb P}} \]
\end{definition}
\begin{example}
\begin{enumerate}
\item If \( \varnothing \in M \), then \( \varnothing^G = \varnothing \).
\item Let
\[ \dot x = \qty{\langle p, \varnothing \rangle, \langle r, \qty{\langle q, \varnothing \rangle} \rangle} \]
If \( p, q, r \in G \), then
\begin{align*}
\dot x^G &= \qty{(\langle p, \varnothing \rangle)^G, \qty(\langle r, \qty{\langle q, \varnothing \rangle} \rangle)^G} \\
&= \qty{\varnothing, \qty{(\langle q, \varnothing \rangle)^G}} \\
&= \qty{\varnothing, \qty{\varnothing}}
\end{align*}
If \( p, r \notin G \), then
\[ \dot x^G = \varnothing \]
If \( r \in G \) but \( p, q \notin G \), then
\[ \dot x^G = \qty{(\langle q, \varnothing \rangle)^G} = \qty{\varnothing} \]
Finally, if \( p \in G \) but \( r \notin G \), then
\[ \dot x^G = \qty{\varnothing} \]
\end{enumerate}
\end{example}
We aim to show the following major theorem.
\begin{theorem}[generic model theorem]
Let \( M \) be a countable transitive model of \( \mathsf{ZF} \), let \( \mathbb P \) be a forcing poset, and let \( G \) be a \( \mathbb P \)-generic filter.
Then
\begin{enumerate}
\item \( M[G] \) is a transitive set;
\item \( \abs{M[G]} = \aleph_0 \);
\item \( M[G] \vDash \mathsf{ZF} \), and if \( M \vDash \mathsf{AC} \) then \( M[G] \vDash \mathsf{AC} \);
\item \( \mathrm{Ord}^M = \mathrm{Ord}^{M[G]} \);
\item \( M \subseteq M[G] \);
\item \( M[G] \) is the smallest countable transitive model of \( \mathsf{ZF} \) such that \( M \subseteq M[G] \) and \( G \) is a set in \( M[G] \).
\end{enumerate}
\end{theorem}
Countability is only needed to show the existence of a generic filter, so parts (i) and (ii)--(vi) of this theorem hold without this assumption.

\subsection{Canonical names}
We can prove some parts of the generic model theorem by introducing the notion of \emph{canonical names}.
\begin{definition}
Given a forcing poset \( (\mathbb P, \leq, \Bbbone) \) and a set \( x \in M \), we define the \emph{canonical} name of \( x \) by
\[ \check x = \qty{\langle \Bbbone, \check y \rangle \mid y \in x} \]
\end{definition}
The symbol \( \check x \) is pronounced \emph{\( x \)-check}.
\begin{lemma}
If \( M \) is a transitive model of \( \mathsf{ZF} \), \( \mathbb P \in M \), and \( 1 \in G \subseteq \mathbb P \), then
\begin{itemize}
\item for all \( x \in M \), \( \check x \in M^{\mathbb P} \) and \( \check x^G = x \);
\item \( M \subseteq M[G] \);
\item \( M[G] \) is transitive.
\end{itemize}
\end{lemma}
\begin{proof}
\emph{Part (i).}
We show \( \check x \in M^{\mathbb P} \) by induction, using the definition of \( \mathbb P \)-names by transfinite recursion.
Hence
\[ \check x^G = \qty{\check y^G \mid y \in x} = \qty{y \mid y \in x} = x \]
Part (ii) follows directly from part (i).

\emph{Part (iii).}
Suppose that \( x \in y \) and \( y \in M[G] \).
By definition, \( y = \dot y^G \) for some \( \mathbb P \)-name \( \dot y \).
By construction, any element of \( y \) is of the form \( \dot z^G \), so in particular, \( x = \dot x^G \) for some \( \mathbb P \)-name \( \dot x \in M^{\mathbb P} \).
\end{proof}
\begin{remark}
Even if \( G \notin M \), we can still define a name for \( G \) in \( M \).
From this, it follows that if \( G \notin M \), then \( M[G] \neq M \).
\end{remark}
\begin{proposition}
Let
\[ \dot G = \qty{\langle p, \check p \rangle \mid p \in \mathbb P} \]
Then \( \dot G^G = G \).
\end{proposition}
\begin{proof}
\[ \dot G^G = \qty{\check p^G \mid p \in G} = \qty{p \mid p \in G} = G \]
\end{proof}

\subsection{Pairing}
We can define unordered and ordered pairs of names, with sensible interpretations.
\begin{definition}
Given \( \mathbb P \)-names \( \dot x, \dot y \), let
\[ \operatorname{up}(\dot x, \dot y) = \qty{\langle \Bbbone, \dot x \rangle, \langle \Bbbone, \dot y \rangle} \]
and
\[ \operatorname{op}(\dot x, \dot y) = \operatorname{up}(\operatorname{up}(\dot x, \dot x), \operatorname{up}(\dot x, \dot y)) \]
\end{definition}
\begin{proposition}
For \( \dot x, \dot y \in M^{\mathbb P} \) and \( \Bbbone \in G \subseteq \mathbb P \),
\[ (\operatorname{up}(\dot x, \dot y))^G = \qty{\dot x^G, \dot y^G} \]
and
\[ (\operatorname{op}(\dot x, \dot y))^G = \langle \dot x^G, \dot y^G \rangle \]
\end{proposition}
\begin{lemma}
Suppose \( M \) is a transitive model of \( \mathsf{ZF} \) and \( \mathbb P \in M \) is a forcing poset.
If \( \Bbbone 1 \in G \subseteq \mathbb P \), then \( M[G] \) is a transitive model of extensionality, empty set, foundation, and pairing.
\end{lemma}
87 changes: 87 additions & 0 deletions iii/lc/02_measurable_cardinals.tex
Original file line number Diff line number Diff line change
Expand Up @@ -336,3 +336,90 @@ \subsection{Strongly compact cardinals}
This is a \( \kappa \)-complete filter on \( \kappa \).
If \( U \) extends \( F \) then \( U \) must be nonprincipal, so by the Keisler--Tarski theorem, \( F \) can be extended to a \( \kappa \)-complete nonprincipal ultrafilter on \( \kappa \) as required.
\end{proof}

\subsection{Reflection}
\begin{definition}
A cardinal \( \kappa \) has the \emph{Keisler extension property}, written \( \mathsf{KEP}(\kappa) \), if there is \( \kappa \in X \supsetneq \mathrm{V}_\kappa \) transitive such that \( \mathrm{V}_\kappa \preceq X \).
\end{definition}
\begin{proposition}
If \( \kappa \) is inaccessible and satisfies the Keisler extension property, there is an inaccessible cardinal \( \lambda < \kappa \).
\end{proposition}
\begin{proof}
Fix \( X \) as in the Keisler extension property.
As \( \kappa \) is inaccessible, \( X \vDash \mathsf{I}(\kappa) \) because \( \kappa \in X \) and inaccessibility is downwards absolute for transitive models.
Also, \( \mathrm{V}_\kappa \vDash \mathsf{ZFC} \), so \( X \vDash \mathsf{ZFC} \) as it is an elementary superstructure.
Therefore, \( X \vDash \mathsf{ZFC} + \mathsf{IC} \), so \( \mathrm{V}_\kappa \vDash \mathsf{ZFC} + \mathsf{IC} \).
So as inaccessibility is absolute between \( \mathrm{V}_\kappa \) and \( \mathrm{V} \), there is an inaccessible \( \lambda < \kappa \).
\end{proof}
The phenomenon that properties of \( X \) occur below \( \kappa \) is called \emph{reflection}.
This argument can be improved in the following sense.
For a given \( \alpha < \kappa \),
\[ X \vDash \exists \lambda > \alpha.\, \mathsf{I}(\lambda) \]
But as \( \alpha \in \mathrm{V}_\kappa \), elementarity gives
\[ \mathrm{V}_\kappa \vDash \exists \lambda > \alpha.\, \mathsf{I}(\lambda) \]
So the set
\[ \qty{\lambda < \kappa \mid \mathsf{I}(\lambda)} \]
is not only nonempty, but cofinal in \( \kappa \).
\begin{corollary}
Let \( \mathsf{A} \) be the axiom
\[ \exists \kappa.\, \mathsf{I}(\kappa) \wedge \mathsf{KEP}(\kappa) \]
Then
\[ \mathsf{ZFC} + \mathsf{IC} <_{\Con} \mathsf{ZFC} + \mathsf{A} \]
\end{corollary}
\begin{proof}
It suffices to show that \( \mathsf{ZFC} + \mathsf{A} \vDash \Con(\mathsf{ZFC} + \mathsf{IC}) \).
We have seen that \( \mathsf{ZFC} + \mathsf{A} \) proves the existence of (at least) two inaccesible cardinals below \( \kappa \), and in particular the larger of the two is a model of \( \mathsf{ZFC} + \mathsf{IC} \).
\end{proof}
\begin{remark}
This is the main technique for proving strict inequalities of consistency strength.
Given two large cardinal properties \( \Phi, \Psi \) with the appropriate amount of absoluteness properties, we show that \( \mathsf{ZFC} + \Phi(\kappa) \) proves that the set
\[ \qty{\lambda < \kappa \mid \Psi(\lambda)} \]
is cofinal in \( \kappa \).
Then \( \mathsf{ZFC} + \Phi\mathsf{C} \vDash \Con(\mathsf{ZFC} + \Psi\mathsf{C}) \).
\end{remark}
\begin{example}
Consider the proof that every inaccessible cardinal has a worldly cardinal below it.
In the construction, we produce a sequence of ordinals \( (\alpha_i)_{i \in \omega} \), and the worldly cardinal is \( \sup \alpha_i \).
But we can set \( \alpha_0 = \lambda + 1 \) for a given worldly cardinal \( \lambda < \kappa \), so this gives a cofinal sequence of worldly cardinals below every given inaccessible.
\end{example}
\begin{theorem}
Every strongly compact cardinal has the Keisler extension property.
\end{theorem}
\begin{proof}
We want to use the method of (elementary) diagrams to produce a model with \( \mathrm{V}_\kappa \) as a substructure.
However, we have no way to control whether such a model is well-founded using standard first-order model-theoretic techniques.
To bypass this issue, we will use infinitary operators.

Let \( c_x \) be a constant symbol for each \( x \in \mathrm{V}_\kappa \), and let \( L \) be the language with \( \in \) and the \( c_x \).
Let
\[ \mathcal V = (\mathrm{V}_\kappa, \in, \qty{x \mid x \in \mathrm{V}_\kappa}) \]
In first-order logic, \( \mathrm{Th}(X) \) is the elementary diagram of \( \mathrm{V}_\kappa \), so if \( M \vDash \mathrm{Th}(X) \), then \( \mathrm{V}_\kappa \subseteq M \).
Let \( L_{\kappa} \) be the \( \mathcal L_{\kappa\kappa} \)-language with the same symbols.
Consider
\[ \psi \equiv \forall^\omega \vb v.\, \bigvee_{i \in \omega} v_{i+1} \notin v_i \]
This expresses well-foundedness (assuming \( \mathsf{AC} \)).
Writing \( \Phi = \mathrm{Th}_{L_\kappa}(\mathcal V) \) for the \( L_\kappa \)-theory of \( \mathcal V \), we must have \( \psi \in \Phi \) since \( \mathrm{V}_\kappa \) is well-founded.
Thus, if \( M \vDash \Phi \), then \( M \) is a well-founded model containing \( \mathrm{V}_\kappa \).
By taking the Mostowski collapse, we may also assume that any such \( M \) is transitive.

Extend \( L_\kappa \) to \( L_\kappa^+ \) with one extra constant \( c \), and let
\[ \Phi^+ = \Phi \cup \qty{c \text{ is an ordinal}} \cup \qty{c \neq c_x \mid x \in \mathrm{V}_\kappa} \]
Any model of \( \Phi^+ \) induces a transitive elementary superstructure of \( \mathrm{V}_\kappa \) that contains an ordinal at least \( \kappa \), so by transitivity, \( \kappa \) is in this model.

We show that \( \Phi^+ \) is satisfiable by showing that it is \( \kappa \)-satisfiable, using the fact that \( \kappa \) is strongly compact.
Let \( \Phi^0 \subseteq \Phi^+ \) be a subset of size less than \( \kappa \).
Then we can interpret \( c \) as some ordinal \( \alpha \) greater than all ordinals \( \beta \) occurring in the sentences \( c \neq c_\beta \) in \( \Phi^+ \).
Then \( \mathcal V \), together with this interpretation of \( c \), is a model of \( \Phi_0 \).
\end{proof}
\begin{corollary}
\[ \mathsf{ZFC} + \mathsf{IC} <_{\Con} \mathsf{ZFC} + \mathsf{SCC} \]
\end{corollary}
The proof above only used languages with at most \( \kappa \)-many symbols.
Let \( \mathsf{WC}(\kappa) \) be the axiom that every \( \mathcal L_{\kappa\kappa} \)-language with at most \( \kappa \)-many symbols satisfies \( \kappa \)-compactness.
Then we have shown that \( \mathsf{WC}(\kappa) \) implies the Keisler extension property.
One can show that
\[ \mathsf{W}(\kappa) \leftrightarrow \mathsf{WC}(\kappa) \]
So the cardinals \( \kappa \) that satisfy \( \mathsf{WC}(\kappa) \) are precisely the weakly compact cardinals.
In particular,
\[ \mathsf{ZFC} + \mathsf{IC} <_{\Con} \mathsf{ZFC} + \mathsf{WCC} \]
Note that in the proof that strongly compact cardinals are measurable, we used a language with \( 2^\kappa \)-many symbols.

0 comments on commit 9e00cbb

Please sign in to comment.