Skip to content

Commit

Permalink
Lectures 05
Browse files Browse the repository at this point in the history
  • Loading branch information
zeramorphic committed Jan 24, 2024
1 parent 08d8824 commit 9399dcb
Showing 1 changed file with 136 additions and 0 deletions.
136 changes: 136 additions & 0 deletions iii/forcing/01.tex
Original file line number Diff line number Diff line change
Expand Up @@ -237,9 +237,145 @@ \subsection{The L\'evy hierarchy}
We define \( \Pi_n^T \) analogously.
A formula is in \( \Delta_n^T \) if there exists \( \psi \in \Sigma_n \) and \( \theta \in \Pi_n \) such that \( T \vdash \varphi \leftrightarrow \psi \) and \( T \vdash \varphi \leftrightarrow \theta \).
\end{definition}
Note that \( \Delta_n \) only makes much sense with respect to some theory \( T \) for \( n > 0 \).
\begin{lemma}
If \( \varphi \) and \( \psi \) are in \( \Sigma_n^{\mathsf{ZF}} \), then so are
\[ \exists v.\, \varphi;\quad \varphi \vee \psi;\quad \varphi \wedge \psi;\quad \exists v_i \in v_j.\, \varphi;\quad \forall v_i \in v_j.\, \varphi \]
If \( \varphi \) is in \( \Sigma_n^{\mathsf{ZF}} \), then \( \neg\varphi \) is in \( \Pi_n^{\mathsf{ZF}} \).
Further, for every \( \varphi \), there exists \( n \) such that \( \varphi \) is in \( \Sigma_n^{\mathsf{ZF}} \), and if \( \varphi \) is in \( \Sigma_n^{\mathsf{ZF}} \), then \( \varphi \) is in \( \Sigma_m^{\mathsf{ZF}} \) for all \( m \geq n \).
\end{lemma}
\begin{remark}
\( \exists x_1.\, \forall x_2.\, \exists x_3.\, \forall y.\, (y \in v \to v \neq v) \) is \( \Sigma_4 \), but is logically equivalent to the statement \( \forall y \in v.\, v \neq v \), which is \( \Sigma_0 \).
The fact that \( \Sigma_n^{\mathsf{ZF}} \) is closed under bounded quantification depends on the axiom of collection.
In particular, in Zermelo set theory, there is a \( \Sigma_1^{\mathsf{Z}} \) formula \( \varphi \) such that \( \forall x \in a.\, \varphi \) is not \( \Sigma_1^{\mathsf{Z}} \).
In intuitionistic logic, these classes are very badly behaved; for instance, we could have a \( \Sigma_1^T \) formula \( \varphi \) such that \( \neg\varphi \) is not \( \Pi_1^T \).
% TODO: Isn't this the other way round?
\end{remark}
We can now show absoluteness for \( \Delta_0 \) formulas between transitive models.
\begin{theorem}
Let \( M \) be transitive in \( N \) and \( M \subseteq N \), and let \( \varphi(\vb u) \) be a \( \Delta_0 \)-formula.
Then, for any \( \vb a \in M \),
\[ M \vDash \varphi(\vb a) \text{ if and only if } N \vDash \varphi(\vb a) \]
\end{theorem}
\begin{proof}
We prove this by induction on the class \( \Delta_0 \).
The cases of atomic formulas and propositional connectives are immediate, so it suffices to show the result for \( \exists x \in a.\, \varphi \) where \( \varphi \) is absolute between \( M \) and \( N \).
Suppose \( M \vDash \exists x \in a.\, \varphi(x) \), so there exists \( b \in M \) such that \( M \vDash b \in a \wedge \varphi(b) \).
Then we also have \( N \vDash b \in a \wedge \varphi(b) \) by absoluteness of \( \varphi \), as required.
Conversely, suppose \( N \vDash \exists x \in a.\, \varphi(x) \), so there exists \( b \in N \) such that \( N \vDash b \in a \wedge \varphi(b) \).
Since \( M \) is transitive in \( N \), we obtain \( b \in M \), so \( M \vDash b \in a \wedge \varphi(b) \) by absoluteness of \( \varphi \).
% TODO: remark on dropping parameters
\end{proof}
\begin{proposition}
The following are \( \Delta_0^{\mathsf{ZF}} \), and therefore absolute between transitive models.
\begin{enumerate}
\item \( x \subseteq y \);
\item \( a = \qty{x, y} \) (the unordered pair);
\item \( a = \langle x, y \rangle \) (the ordered pair);
\item \( a = x \times y \);
\item \( a = \bigcup b \);
\item \( a \) is a transitive set;
\item \( x = \varnothing \);
\item \( r \) is a relation;
\item \( r \) is a function;
\item \( r \) is a relation with domain \( a \) and range \( b \);
\item \( x \) is the pointwise image of \( r \) on \( a \), denoted \( r '' a = \qty{y \mid \exists x \in a.\, \langle x, y \rangle \in r} \);
\item \( \eval{r}_a \).
\end{enumerate}
\end{proposition}
\begin{remark}
The following are not absolute between transitive models, and thus not \( \Delta_0^{\mathsf{ZF}} \).
\begin{enumerate}
\item the cofinality function \( \alpha \mapsto \cf(\alpha) \);
\item being a cardinal;
\item \( \omega_1 \);
\item \( y = \mathcal P(x) \).
\end{enumerate}
\end{remark}
\begin{lemma}
The statement that a given set \( a \) is finite is \( \Delta_1^{\mathsf{ZF}} \).
\end{lemma}
\begin{proposition}
Let \( M \) be transitive in \( N \) and \( M \subseteq N \).
Then \( \Sigma_1 \) formulas are upwards absolute between \( M \) and \( N \), and \( \Pi_1 \) formulas are downwards absolute between \( M \) and \( N \).
\end{proposition}
\begin{corollary}
\( \Delta_1^{\mathsf{ZF}} \) formulas are absolute between transitive models.
\end{corollary}
\begin{lemma}
(\( \mathsf{ZF} \))
The statement that \( \alpha \) is an ordinal is absolute.
\end{lemma}
\begin{proof}
First, note that \( \alpha \) is an ordinal in \( \mathsf{ZF} \) if and only if it is a transitive set of transitive sets.
This can be written as
\[ (\forall \beta \in \alpha.\, \forall \gamma \in \beta.\, \gamma \in \alpha) \wedge (\forall \beta \in \alpha.\, \forall \gamma \in \beta.\, \forall \delta \in \gamma.\, \delta \in \beta) \]
which is \( \Delta_0 \), as required.
\end{proof}
We can give a slightly better rephrasing of this lemma.
\begin{lemma}
The statement that \( r \) is a strict total ordering of \( a \) is \( \Delta_0 \).
\end{lemma}
\begin{proof}
The statement that \( r \) is a transitive relation on \( a \) is that
\[ \forall x y z \in a.\, (\langle x, y \rangle \in r \wedge \langle y, z \rangle \in r \to \langle x, z \rangle \in r) \]
Trichotomy is
\[ \forall x y \in a.\, (\langle x, y \rangle \in r \vee \langle y, x \rangle \in r \vee x = y) \]
Irreflexivity is
\[ \forall x \in a.\, \langle x, x \rangle \notin r \]
\end{proof}
\begin{corollary}
The statement that \( x \) is a transitive set totally ordered by \( \in \) is \( \Delta_0 \), and thus ordinals are in fact \( \Delta_0 \).
\end{corollary}
\begin{lemma}
(\( \mathsf{ZF} \))
The statement that \( r \) is well-founded on \( a \) is \( \Delta_1^{\mathsf{ZF}} \).
\end{lemma}
\begin{proof}
The \( \Pi_1 \) formula is
\[ r \text{ is a relation on } a \wedge \qty[\forall X.\,(\exists x \in X.\, (z = z) \wedge X \subseteq a) \to \exists x \in X.\, \forall y \in X.\, \langle y, z \rangle \notin r] \]
For the \( \Sigma_1 \) formula, we first show that a relation is well-founded on \( a \) if and only if there exists a function \( a \to \mathrm{Ord} \) such that \( \langle y, x \rangle \in r \) implies \( f(y) \in f(x) \).
Suppose \( r \) is well-founded; we then define \( f : a \to \mathrm{Ord} \) by \( f(x) = \sup\qty{f(y) + 1 \mid \langle y, x \rangle \in r} \), and one can show that this satisfies the required property.
For the other direction, let \( X \subseteq a \) be a nonempty subset, and consider the pointwise image \( f''X \).
This has a minimal element \( \alpha \), then for any \( z \in X \), if \( f(z) = \alpha \) then for all \( y \in X \), we have \( f(y) \geq \alpha \), so \( \langle y, z \rangle \notin r \).
We then define well-foundedness with a \( \Sigma_1 \) formula as follows.
\[ \exists f.\, \qty(f \text{ is a function} \wedge \forall u \in \operatorname{ran} f.\, (u \in \mathrm{Ord}) \wedge \forall x y \in a.\, (\langle y, x \rangle \in r \to f(y) \in f(x))) \]
\end{proof}
\begin{proposition}
The following are \( \Delta_0^{\mathsf{ZF}} \).
\begin{enumerate}
\item \( x \) is a limit ordinal;
\item \( x \) is a successor ordinal;
\item \( x \) is a finite ordinal;
\item \( x = \omega \);
\item \( x = n \) for any finite ordinal \( n \).
\end{enumerate}
\end{proposition}
\begin{proposition}
The following are \( \Pi_1^{\mathsf{ZF}} \) and hence downwards absolute between transitive models.
\begin{enumerate}
\item \( \kappa \) is a cardinal;
\item \( \kappa \) is regular;
\item \( \kappa \) is a limit cardinal;
\item \( \kappa \) is a strong limit cardinal.
\end{enumerate}
\end{proposition}
\begin{lemma}
(\( \mathsf{ZF} \))
% TODO: comment on what this annotation means
Let \( W \) be a nonempty transitive class.
Then the axioms of extensionality, empty set, and foundation all hold in \( W \).
\end{lemma}
\begin{proof}
For extensionality, the relativisation of
\[ \forall x.\, \forall y.\, (\forall z.\, (z \in x \leftrightarrow x \in y) \to x = y) \]
to \( W \) is
\[ \forall x \in W.\, \forall y \in W.\, (\forall z \in W.\, (z \in x \leftrightarrow x \in y) \to x = y) \]
Suppose \( x \in W, y \in W \), but \( x \neq y \).
Then by extensionality in the metatheory, without loss of generality we can fix \( z \in x \) with \( z \notin y \).
But since \( W \) is transitive, we must have \( z \in W \), contradicting \( x = y \), as required.

As \( W \) is nonempty, we can use foundation to fix \( x \in W \) such that \( x \cap W = \varnothing \).
Since \( W \) is transitive, \( x \subseteq W \), and therefore \( x = \varnothing \in W \).
Moreover, the statement that \( x = \varnothing \) is \( \Delta_0 \) and therefore absolute.
\end{proof}

0 comments on commit 9399dcb

Please sign in to comment.