Skip to content

Commit

Permalink
Fix hboxes in vol3
Browse files Browse the repository at this point in the history
Signed-off-by: zeramorphic <[email protected]>
  • Loading branch information
zeramorphic committed Aug 19, 2023
1 parent c20de33 commit 6b3c260
Show file tree
Hide file tree
Showing 39 changed files with 115 additions and 90 deletions.
2 changes: 1 addition & 1 deletion ia/analysis/02_series.tex
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ \subsection{Definition}
s_N & = \sum_{j=1}^N (\lambda a_j + \mu b_j) \\
& = \sum_{j=1}^N \lambda a_j + \sum_{j=1}^N \mu b_j \\
& = \lambda c_N + \mu d_N \\
\therefore s_N & \to \lambda c + \mu d
\therefore\ s_N & \to \lambda c + \mu d
\end{align*}
\item For any \(n \geq N\), we have
\begin{align*}
Expand Down
2 changes: 1 addition & 1 deletion ia/analysis/07_differentiability.tex
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,7 @@ \subsection{Inverse function theorem}
\begin{align*}
\frac{g(y + k) - g(y)}{k} & = \frac{x + h - x}{f(x+h) - y} \\
& = \frac{h}{f(x+h) - f(x)} \\
\therefore \lim_{k \to 0} \frac{g(y + k) - g(y)}{k} & = \lim_{h \to 0} \frac{h}{f(x+h) - f(x)} \\
\therefore\ \lim_{k \to 0} \frac{g(y + k) - g(y)}{k} & = \lim_{h \to 0} \frac{h}{f(x+h) - f(x)} \\
& = \frac{1}{f'(x)}
\end{align*}
as required.
Expand Down
2 changes: 1 addition & 1 deletion ia/analysis/09_power_series.tex
Original file line number Diff line number Diff line change
Expand Up @@ -205,7 +205,7 @@ \subsection{Infinite differentiability}
\begin{align*}
(z + h)^n - z^n - nhz^{n-1} & = \left( \sum_{r=0}^n \binom{n}{r} z^{n-r} h^r \right) - z^n - nhz^{n-1} \\
& = \sum_{r=2}^n \binom{n}{r} z^{n-r} h^r \\
\therefore \abs{(z + h)^n - z^n - nhz^{n-1}} & = \abs{\sum_{r=2}^n \binom{n}{r} z^{n-r} h^r} \\
\therefore\ \abs{(z + h)^n - z^n - nhz^{n-1}} & = \abs{\sum_{r=2}^n \binom{n}{r} z^{n-r} h^r} \\
& \leq \sum_{r=2}^n \abs{\binom{n}{r} z^{n-r} h^r} \\
& = \sum_{r=2}^n \binom{n}{r} \abs{z}^{n-r} \abs{h}^r \\
& \leq n(n-1) \underbrace{\left[ \sum_{r=2}^n \binom{n-2}{r-2} \abs{z}^{n-r} \abs{h}^{r-2} \right]}_{(\abs{z} + \abs{h})^{n-2}} \abs{h}^2 \\
Expand Down
2 changes: 1 addition & 1 deletion ia/de/01_differentiation.tex
Original file line number Diff line number Diff line change
Expand Up @@ -190,7 +190,7 @@ \subsection{Equation of a tangent}
\begin{align*}
\eval{\frac{\dd{f}}{\dd{x}}}_{x=x_0} & = \frac{f(x_0 + h) - f(x_0)}{h} \\
& = \frac{f(x_0 + h) - f(x_0)}{h} + \frac{o(h)}{h} \\
\therefore f(x_0 + h) & = f(x_0) + \eval{\frac{\dd{f}}{\dd{x}}}_{x=x_0} h + o(h)
\therefore\ f(x_0 + h) & = f(x_0) + \eval{\frac{\dd{f}}{\dd{x}}}_{x=x_0} h + o(h)
\end{align*}
If we now take \(x=x_0+h;\,y=f(x);\,y_0=f(x_0)\), we have
\[
Expand Down
6 changes: 3 additions & 3 deletions ia/de/04_linear_ordinary_differential_equations.tex
Original file line number Diff line number Diff line change
Expand Up @@ -58,19 +58,19 @@ \subsection{Eigenfunction forcing}
\begin{align*}
\dot a & = -k_a a \implies a = a_0 e^{-k_a t} \\
\dot b & = k_a a - k_b b \\
\therefore \dot b + k_b b & = k_a a_0 e^{-k_a t}
\therefore\ \dot b + k_b b & = k_a a_0 e^{-k_a t}
\end{align*}
So we have a linear first order ODE with an eigenfunction as the forcing function.
We can guess that the particular integral is of the form \(b_p = \lambda e^{-k_a t}\).
\begin{align*}
-k_a\lambda e^{-k_a t} + k_b \lambda e^{-k_a t} & = k_a a_0 e^{-k_a t} \\
\lambda(k_b-k_a) & = k_a a_0 \\
\therefore \lambda & = \frac{k_a}{k_b - k_a} a_0
\therefore\ \lambda & = \frac{k_a}{k_b - k_a} a_0
\end{align*}
We can form the complementary function by solving:
\begin{align*}
\dot{b_c} + k_b b_c & = 0 \\
\therefore b_c & = Ae^{-k_b t}
\therefore\ b_c & = Ae^{-k_b t}
\end{align*}
So combining everything, we have
\[
Expand Down
6 changes: 3 additions & 3 deletions ia/de/06_isoclines_and_solution_curves.tex
Original file line number Diff line number Diff line change
Expand Up @@ -175,14 +175,14 @@ \subsection{Fixed points and perturbation analysis}
\item (\(y = 1\)) \begin{align*}
\dot \varepsilon & = -2(1)t \varepsilon \\
& = -2t\varepsilon \\
\therefore \varepsilon & = \varepsilon_0 e^{-t^2} \\
\therefore\ \varepsilon & = \varepsilon_0 e^{-t^2} \\
\lim_{t \to \infty} \varepsilon_0 e^{-t^2} & = 0
\end{align*}
so this point is stable.
\item (\(y = 1\)) \begin{align*}
\dot \varepsilon & = -2(-1)t \varepsilon \\
& = 2t\varepsilon \\
\therefore \varepsilon & = \varepsilon_0 e^{t^2} \\
\therefore\ \varepsilon & = \varepsilon_0 e^{t^2} \\
\lim_{t \to \infty} \varepsilon_0 e^{t^2} & = \pm\infty
\end{align*}
so this point is unstable.
Expand All @@ -194,7 +194,7 @@ \subsection{Autonomous differential equations}
Therefore, near a fixed point \(y=a\), we have:
\begin{align*}
y & = a + \varepsilon(t) \\
\therefore\dot\varepsilon & = \varepsilon \frac{\dd{f}}{\dd{y}}(a) = \varepsilon k
\therefore\\dot\varepsilon & = \varepsilon \frac{\dd{f}}{\dd{y}}(a) = \varepsilon k
\end{align*}
where \(k\) is the constant value \(\frac{\dd{f}}{\dd{y}}(a)\).
Note that we can use normal derivatives in place of partial derivatives because \(f\) depends only on \(y\).
Expand Down
2 changes: 1 addition & 1 deletion ia/de/07_phase_portraits.tex
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ \subsection{Phase portraits}
Let \(\alpha y\) denote the birth rate, and \(\beta y\) be the death rate.
Then, we can model this using a linear model by:
\[
\frac{\dd{y}}{\dd{t}} = \alpha y - \beta y \quad \therefore y = y_0 e^{(\alpha - \beta) t}
\frac{\dd{y}}{\dd{t}} = \alpha y - \beta y \quad \therefore\ y = y_0 e^{(\alpha - \beta) t}
\]
If \(\alpha > \beta\) then we have exponential growth; if \(\alpha < \beta\) then we have exponential decay.
This is an unrealistic model, so we can use a nonlinear model to increase accuracy.
Expand Down
2 changes: 1 addition & 1 deletion ia/de/09_forced_second_order_odes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -262,7 +262,7 @@ \subsection{Resonance in undamped systems}
C(-\omega^2 + \omega_0^2) = 1
\]
\[
\therefore y_p = \frac{1}{\omega_0^2 - \omega^2}\sin\omega t
\therefore\ y_p = \frac{1}{\omega_0^2 - \omega^2}\sin\omega t
\]
As the system is linear in \(y\) and its derivatives, we can freely add some multiple of the complementary function and it will remain a solution.
\[
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ \subsection{Fuch's theorem}
a_n & = \frac{n-3}{n-1}a_{n-2} \\
a_n & = \frac{n-3}{n-1}\frac{n-5}{n-3}a_{n-4} = \frac{n-5}{n-1}a_{n-4} \\
a_n & = \frac{n-5}{n-1}\frac{n-7}{n-5}a_{n-6} = \frac{n-7}{n-1}a_{n-6} \\
\therefore a_n & = \frac{-1}{n-1}a_0
\therefore\ a_n & = \frac{-1}{n-1}a_0
\end{align*}
Therefore
\[
Expand Down
2 changes: 1 addition & 1 deletion ia/de/12_multivariate_calculus.tex
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@ \subsection{Contours near stationary points}
f = \text{constant (since \(f\) is a contour)} \approx f(\vb x_s) = \frac{1}{2}\delta \vb x \cdot H \cdot \delta \vb x^\transpose
\]
\begin{equation}\label{contourhessian}
\therefore \lambda_1 \xi^2 + \lambda_2 \eta^2 \approx \text{constant}
\therefore\ \lambda_1 \xi^2 + \lambda_2 \eta^2 \approx \text{constant}
\end{equation}
Near a minimum or maximum point, \(\lambda_1\) and \(\lambda_2\) have the same sign.
\eqref{contourhessian} implies that the contours of \(f\) are elliptical.
Expand Down
2 changes: 1 addition & 1 deletion ia/dr/06_angular_motion_and_orbits.tex
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ \subsection{Polar coordinates in the plane}
We can compute expressions for velocity and acceleration in terms of these new coordinates.
\begin{align*}
\vb r & = r \vb e_r \\
\therefore \dot{\vb r} & = \dot r \vb e_r + r \frac{\dd}{\dd{t}}\vb e_r \\
\therefore\ \dot{\vb r} & = \dot r \vb e_r + r \frac{\dd}{\dd{t}}\vb e_r \\
& = \dot r \vb e_r + r \dot\theta \vb e_\theta
\end{align*}
So \(\dot r\) is the radial component of the velocity, and \(r\dot\theta\) is the angular component of the velocity.
Expand Down
2 changes: 1 addition & 1 deletion ia/dr/16_relativistic_physics.tex
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ \subsection{Proper time}
& = \frac{1}{c}\sqrt{c^2\dd{t}^2 - \abs{\dd{\vb x}}^2} \\
& = \frac{1}{c}\sqrt{c^2\dd{t}^2 - \abs{\vb u}^2 \dd{t}^2} \\
& = \qty(1 - \frac{\vb u^2}{c^2})^{\frac{1}{2}}\dd{t} \\
\therefore \dv{t}{\tau} & = \gamma_{\vb u}
\therefore\ \dv{t}{\tau} & = \gamma_{\vb u}
\end{align*}
where \(\gamma_{\vb u} = \qty(1 - \frac{\vb u^2}{c^2})^{\frac{1}{2}}\).
Now, the total time observed by a particle moving along its world line is
Expand Down
2 changes: 1 addition & 1 deletion ia/probability/08_combinations_of_random_variables.tex
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ \subsection{Properties of conditional expectation}
We can see by the standard properties of the expectation that
\begin{align*}
\expect{X \mid Y} & = \sum_y 1(Y = y) \expect{X \mid Y = y} \\
\therefore \expect{\expect{X \mid Y}} & = \sum_y \expect{1(Y = y)} \expect{X \mid Y = y} \\
\therefore\ \expect{\expect{X \mid Y}} & = \sum_y \expect{1(Y = y)} \expect{X \mid Y = y} \\
& = \sum_y \prob{Y = y} \expect{X \mid Y = y} \\
& = \sum_y \prob{Y = y} \frac{\expect{X \cdot 1(Y = y)}}{\prob{Y = y}} \\
& = \sum_y \expect{X \cdot 1(Y = y)} \\
Expand Down
6 changes: 3 additions & 3 deletions ia/probability/11_branching_processes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,8 @@ \subsection{Expectation of generation size}
& = \expect{Y_{1,n} + \cdots + Y_{m,n} \mid X_n = m} \\
& = m \expect{Y_{1,n}} \\
& = m \expect{X_1} \\
\therefore \expect{X_{n+1} \mid X_n} & = X_n \cdot \expect{X_1} \\
\therefore \expect{X_{n+1}} & = \expect{X_n \cdot \expect{X_1}} \\
\therefore\ \expect{X_{n+1} \mid X_n} & = X_n \cdot \expect{X_1} \\
\therefore\ \expect{X_{n+1}} & = \expect{X_n \cdot \expect{X_1}} \\
& = \expect{X_n} \cdot \expect{X_1}
\end{align*}
\end{proof}
Expand All @@ -51,7 +51,7 @@ \subsection{Probability generating functions}
\expect{z^{X_{n+1}} \mid X_n = m} & = \expect{z^{Y_{1, n} + \dots + Y_{m,n}} \mid X_n = m} \\
& = \expect{z^{X_1}}^m \\
& = G(z)^m \\
\therefore \expect{\expect{z^{X_{n+1}} \mid X_n}} & = \expect{G(z)^{X_n}} \\
\therefore\ \expect{\expect{z^{X_{n+1}} \mid X_n}} & = \expect{G(z)^{X_n}} \\
& = G_n(G(z))
\end{align*}
\end{proof}
Expand Down
2 changes: 1 addition & 1 deletion ia/probability/13_multivariate_density_functions.tex
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@ \subsection{Order statistics of a random sample}
\cdot \prob{X_1 \leq x_1, \dots, X_n \leq x_n, X_1 < \dots < X_n} \\
& = n!
\int_{-\infty}^{x_1} \int_{u_1}^{x_2} \cdots \int_{u_{n-1}}^{x_n} f(u_1) \cdots f(u_n) \dd{u_1} \cdots \dd{u_n} \\
\therefore f_{Y_1, \dots, Y_n}(x_1, \dots, x_n) & = n!
\therefore\ f_{Y_1, \dots, Y_n}(x_1, \dots, x_n) & = n!
f(x_1) \cdots f(x_n)
\end{align*}
when \(x_1 < x_2 < \dots < x_n\), and the joint density is zero otherwise.
Expand Down
2 changes: 1 addition & 1 deletion ia/probability/17_simulation_of_random_variables.tex
Original file line number Diff line number Diff line change
Expand Up @@ -84,5 +84,5 @@ \subsection{Rejection sampling}
& = \frac{1}{\lambda} \int_B f(x) \dd{x} \\
\abs{A} & = \frac{1}{\lambda} \int_{[0,1]^{d-1}} f(x) \dd{x} \\
& = \frac{1}{\lambda} \\
\therefore \prob{X \in B} & = \int_B f(x) \dd{x}
\therefore\ \prob{X \in B} & = \int_B f(x) \dd{x}
\end{align*}
4 changes: 2 additions & 2 deletions ia/vc/08_maxwell_s_equations.tex
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ \subsection{Electromagnetic waves}
& = \frac{1}{c^2} \pdv[2]{\vb E}{t}
\end{align*}
\[
\therefore \laplacian \vb E - \frac{1}{c^2} \pdv[2]{\vb E}{t} = \vb 0
\therefore\ \laplacian \vb E - \frac{1}{c^2} \pdv[2]{\vb E}{t} = \vb 0
\]
which is the wave equation for waves travelling at speed \(c\).
Hence, in a vacuum, the electric field propagates at speed \(c\).
Expand All @@ -87,7 +87,7 @@ \subsection{Electromagnetic waves}
& = \frac{1}{c^2} \pdv[2]{\vb B}{t}
\end{align*}
\[
\therefore \laplacian \vb B - \frac{1}{c^2} \pdv[2]{\vb B}{t} = \vb 0
\therefore\ \laplacian \vb B - \frac{1}{c^2} \pdv[2]{\vb B}{t} = \vb 0
\]
Hence the magnetic field also propagates at speed \(c\).
So in general, we can say that electromagnetic waves always travel at speed \(c\) in a vacuum.
Expand Down
2 changes: 1 addition & 1 deletion ia/vm/01_complex_numbers.tex
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ \subsection{Definition and basic theorems}
\begin{align*}
\abs{z_2 - z_1} & \geq \abs{z_2} - \abs{z_1} \\
\text{or } \abs{z_2 - z_1} & \geq \abs{z_1} - \abs{z_2} \\
\therefore \abs{z_2 - z_1} & \geq \abs{\abs{z_2} - \abs{z_1}} \\
\therefore\ \abs{z_2 - z_1} & \geq \abs{\abs{z_2} - \abs{z_1}} \\
\end{align*}

De Moivre's Theorem states that
Expand Down
4 changes: 2 additions & 2 deletions ia/vm/05_vectors_in_real_euclidean_space.tex
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ \subsection{Inner product spaces}
Then by the Cauchy--Schwarz inequality, we have
\begin{align*}
\abs{\langle f, g \rangle} & \leq \norm{f} \cdot \norm{g} \\
\therefore \abs{\int_0^1 f(x)g(x)\dd{x}} & \leq \sqrt{\int_0^1 f(x)^2 \dd{x}}\sqrt{\int_0^1 g(x)^2 \dd{x}}
\therefore\ \abs{\int_0^1 f(x)g(x)\dd{x}} & \leq \sqrt{\int_0^1 f(x)^2 \dd{x}}\sqrt{\int_0^1 g(x)^2 \dd{x}}
\end{align*}

\begin{lemma}
Expand All @@ -114,7 +114,7 @@ \subsection{Inner product spaces}
\begin{align*}
\left\langle \vb v_j, \sum_i \alpha_i \vb v_i \right\rangle & = 0 \\
\intertext{And because each vector that is not \(\vb v_j\) is orthogonal to it, those terms cancel, leaving}
\therefore \left\langle \vb v_j, \alpha_j \vb v_j \right\rangle & = 0 \\
\therefore\ \left\langle \vb v_j, \alpha_j \vb v_j \right\rangle & = 0 \\
\alpha_j \left\langle \vb v_j, \vb v_j \right\rangle & = 0 \\
\alpha_j = 0
\end{align*}
Expand Down
4 changes: 2 additions & 2 deletions ia/vm/08_linear_maps.tex
Original file line number Diff line number Diff line change
Expand Up @@ -337,7 +337,7 @@ \subsection{Matrices}
Therefore:
\begin{align*}
x_i' & = x_i + \lambda b_j x_j a_i = S_{ij}x_j \\
\therefore S_{ij} & = \delta_{ij} + \lambda a_i b_j
\therefore\ S_{ij} & = \delta_{ij} + \lambda a_i b_j
\end{align*}
For example in \(\mathbb R^2\) with \(\vb a = \begin{pmatrix}
1 \\ 0
Expand All @@ -353,7 +353,7 @@ \subsection{Matrices}
\begin{align*}
\vb x' & = R\vb x = (\cos \theta)\vb x + (1 - \cos \theta)(\nhat \cdot \vb x)\nhat + (\sin \theta)(\nhat \times \vb x) \\
x_i' & = (\cos \theta)x_i + (1 - \cos \theta)n_j x_j n_i - (\sin \theta) \varepsilon_{ijk}x_j n_k = R_{ij} x_j \\
\therefore R_{ij} & = \delta_{ij}(\cos \theta) - (1 - \cos \theta)n_i n_j - (\sin \theta)\varepsilon_{ijk} n_k
\therefore\ R_{ij} & = \delta_{ij}(\cos \theta) - (1 - \cos \theta)n_i n_j - (\sin \theta)\varepsilon_{ijk} n_k
\end{align*}
\end{enumerate}
\end{example}
Expand Down
2 changes: 1 addition & 1 deletion ia/vm/09_transpose_and_hermitian_conjugate.tex
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ \subsection{Orthogonal matrices}
\]
because
\[
H_{ij} = \delta_{ij} - 2n_i n_j \therefore H = \begin{pmatrix}
H_{ij} = \delta_{ij} - 2n_i n_j \therefore\ H = \begin{pmatrix}
1 - 2 \sin^2 \frac{\theta}{2} & 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} \\
2\sin\frac{\theta}{2} \cos\frac{\theta}{2} & 1-2\cos^2\frac{\theta}{2}
\end{pmatrix}
Expand Down
2 changes: 1 addition & 1 deletion ia/vm/20_symmetries_and_transformation_groups.tex
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ \subsection{2D Minkowski space}
\end{pmatrix}
\]
\[
\therefore \left( \begin{pmatrix}
\therefore\ \left( \begin{pmatrix}
x_0 \\ x_1
\end{pmatrix}, \begin{pmatrix}
y_0 \\ y_1
Expand Down
19 changes: 12 additions & 7 deletions ib/antop/03_metric_spaces.tex
Original file line number Diff line number Diff line change
Expand Up @@ -326,10 +326,15 @@ \subsection{Continuity}
\end{proposition}
\begin{proof}
Let \( \varepsilon > 0 \).
We want to find \( \delta > 0 \) such that \( \forall x \in M \), \( d(x,a) < \delta \) implies \( d''(g(f(x)), g(f(a))) < \varepsilon \).
Since \( g \) is continuous at \( f(a) \), there exists \( \eta > 0 \) such that \( \forall y \in M' \), \( d'(y,f(a)) < \eta \implies d''(g(y), g(f(a))) < \varepsilon \).
Now, since \( f \) is continuous at \( a \), for this \( \eta \) there exists \( \delta \) such that for all \( x \in M \), \( d(x,a) < \delta \implies d'(f(x) - f(a)) < \eta \).
Then \( d(x,a) < \delta \implies d''(g(f(x)), g(f(a))) < \varepsilon \) as required.
We want to find \( \delta > 0 \) such that \( \forall x \in M \),
\[ d(x,a) < \delta \implies d''(g(f(x)), g(f(a))) < \varepsilon \]
Since \( g \) is continuous at \( f(a) \), there exists \( \eta > 0 \) such that \( \forall y \in M' \),
\[ d'(y,f(a)) < \eta \implies d''(g(y), g(f(a))) < \varepsilon \]
Now, since \( f \) is continuous at \( a \), for this \( \eta \) there exists \( \delta \) such that for all \( x \in M \),
\[ d(x,a) < \delta \implies d'(f(x) - f(a)) < \eta \]
Then
\[ d(x,a) < \delta \implies d''(g(f(x)), g(f(a))) < \varepsilon \]
as required.
\end{proof}

\begin{example}
Expand Down Expand Up @@ -362,9 +367,9 @@ \subsection{Isometric, Lipschitz, and uniformly continuous functions}
Let \( f \colon M \to M' \) be a function between metric spaces.
Then, \( f \) is
\begin{enumerate}
\item \textit{isometric}, if \( \forall x,y \in M, d'(f(x),f(y)) = d(x,y) \)
\item \textit{Lipschitz}, or \( c \)-Lipschitz, if \( \exists c \in \mathbb R^+, \forall x,y \in M, d'(f(x),f(y)) \leq c\cdot d(x,y) \)
\item \textit{uniformly continuous}, if \( \forall \varepsilon > 0, \exists \delta > 0, \forall x,y \in M, d(x,y) < \delta \implies d'(f(x), f(y)) < \varepsilon \)
\item \textit{isometric}, if \[ \forall x,y \in M, d'(f(x),f(y)) = d(x,y) \]
\item \textit{Lipschitz}, or \( c \)-Lipschitz, if \[ \exists c \in \mathbb R^+, \forall x,y \in M, d'(f(x),f(y)) \leq c\cdot d(x,y) \]
\item \textit{uniformly continuous}, if \[ \forall \varepsilon > 0, \exists \delta > 0, \forall x,y \in M, d(x,y) < \delta \implies d'(f(x), f(y)) < \varepsilon \]
\end{enumerate}
\end{definition}
\begin{remark}
Expand Down
Loading

0 comments on commit 6b3c260

Please sign in to comment.