Skip to content

Commit

Permalink
Lectures 2024-03-08
Browse files Browse the repository at this point in the history
  • Loading branch information
zeramorphic committed Mar 8, 2024
1 parent b2afae9 commit 45c3666
Show file tree
Hide file tree
Showing 4 changed files with 231 additions and 38 deletions.
26 changes: 13 additions & 13 deletions iii/forcing/03_forcing.tex
Original file line number Diff line number Diff line change
Expand Up @@ -89,14 +89,14 @@ \subsection{Forcing posets}
and if \( \mathbb P \) has a maximal element, so does \( \faktor{\mathbb P}{\sim} \).
\end{proposition}
\begin{example}
For sets \( I, J \), we let \( \operatorname{Fn}(I, J) \) denote the set of all finite partial functions from \( I \) to \( J \).
\[ \operatorname{Fn}(I, J) = \qty{p \mid \abs{p} < \omega \wedge p \text{ is a function} \wedge \dom p \subseteq I \wedge \ran p \subseteq J} \]
We let \( \leq \) be the reverse inclusion on \( \operatorname{Fn}(I, J) \), so \( q \leq p \) if and only if \( q \supseteq p \).
For sets \( I, J \), we let \( \Fn(I, J) \) denote the set of all finite partial functions from \( I \) to \( J \).
\[ \Fn(I, J) = \qty{p \mid \abs{p} < \omega \wedge p \text{ is a function} \wedge \dom p \subseteq I \wedge \ran p \subseteq J} \]
We let \( \leq \) be the reverse inclusion on \( \Fn(I, J) \), so \( q \leq p \) if and only if \( q \supseteq p \).
The maximal element \( \Bbbone \) is the empty set.
Then \( (\operatorname{Fn}(I, J), \leq, \varnothing) \) is a forcing poset, and moreover, the preorder is separative.
Then \( (\Fn(I, J), \leq, \varnothing) \) is a forcing poset, and moreover, the preorder is separative.
\end{example}
\begin{remark}
When \( \alpha \) is an ordinal, the forcing poset \( \operatorname{Fn}(\alpha \times \omega, 2) \) is often written \( \operatorname{Add}(\omega, \alpha) \), denoting the idea that we are adding \( \alpha \)-many subsets of \( \omega \).
When \( \alpha \) is an ordinal, the forcing poset \( \Fn(\alpha \times \omega, 2) \) is often written \( \operatorname{Add}(\omega, \alpha) \), denoting the idea that we are adding \( \alpha \)-many subsets of \( \omega \).
\end{remark}

\subsection{Chains and \texorpdfstring{\( \Delta \)}{Δ}-systems}
Expand All @@ -111,9 +111,9 @@ \subsection{Chains and \texorpdfstring{\( \Delta \)}{Δ}-systems}
\end{definition}
\begin{example}
\begin{enumerate}
\item Consider the tree \( \operatorname{Fn}(\omega, 2) \).
\item Consider the tree \( \Fn(\omega, 2) \).
A chain is a branch through the tree, and an antichain is a collection of points on different branches.
\item The set of functions \( \qty{\qty{\langle 0, 0 \rangle, \langle 1, n \rangle} \mid n \in \omega} \) forms an antichain of length \( \omega \) in \( \operatorname{Fn}(I, \omega) \) if \( \qty{0,1} \subseteq I \).
\item The set of functions \( \qty{\qty{\langle 0, 0 \rangle, \langle 1, n \rangle} \mid n \in \omega} \) forms an antichain of length \( \omega \) in \( \Fn(I, \omega) \) if \( \qty{0,1} \subseteq I \).
\end{enumerate}
\end{example}
\begin{definition}
Expand Down Expand Up @@ -169,18 +169,18 @@ \subsection{Chains and \texorpdfstring{\( \Delta \)}{Δ}-systems}
\end{proposition}
\begin{lemma}
(\( \mathsf{ZFC} \))
\( \operatorname{Fn}(I, J) \) has the countable chain condition if and only if \( I \) is empty or \( J \) is countable.
\( \Fn(I, J) \) has the countable chain condition if and only if \( I \) is empty or \( J \) is countable.
\end{lemma}
\begin{proof}
First, we observe that if \( I \) or \( J \) are empty, then \( \operatorname{Fn}(I, J) \) is empty and so trivially has the countable chain condition.
First, we observe that if \( I \) or \( J \) are empty, then \( \Fn(I, J) \) is empty and so trivially has the countable chain condition.
Now let us assume that both \( I \) and \( J \) are nonempty.

Suppose that \( J \) is uncountable.
Then for any \( i \in I \), the set
\[ \qty{\qty{\langle i, j \rangle} \mid j \in J} \]
is an uncountable antichain.

Now suppose \( J \) is countable, and let \( \qty{p_\alpha \mid \alpha \in \omega_1} \) be a collection of distinct elements of \( \operatorname{Fn}(I, J) \).
Now suppose \( J \) is countable, and let \( \qty{p_\alpha \mid \alpha \in \omega_1} \) be a collection of distinct elements of \( \Fn(I, J) \).
Let \( \mathcal A = \qty{\dom p_\alpha \mid \alpha \in \omega_1} \), which is a collection of \( \omega_1 \)-many finite sets.
By the \( \Delta \)-system lemma, we can find an uncountable subset \( \mathcal B \subseteq \mathcal A \) with a root \( R \subseteq I \).
By definition, \( R \subseteq \dom(p_\alpha) \) for all \( \dom p_\alpha \in \mathcal B \), the root \( R \) must be finite.
Expand All @@ -203,8 +203,8 @@ \subsection{Dense sets and genericity}
Let \( I \) be infinite and \( J \) nonempty.
Then for all \( i \in I \) and \( j \in J \), the following are dense.
\begin{enumerate}
\item \( D_i = \qty{q \in \operatorname{Fn}(I, J) \mid i \in \dom q} \);
\item \( R_j = \qty{q \in \operatorname{Fn}(I, J) \mid j \in \ran q} \).
\item \( D_i = \qty{q \in \Fn(I, J) \mid i \in \dom q} \);
\item \( R_j = \qty{q \in \Fn(I, J) \mid j \in \ran q} \).
\end{enumerate}
\end{example}
\begin{definition}
Expand Down Expand Up @@ -248,7 +248,7 @@ \subsection{Dense sets and genericity}
But all conditions in \( F \) are compatible, so one of \( r \) and \( q \) is not in \( F \).
\end{proof}
\begin{proposition}
For sets \( I, J \) such that \( \abs{I} \geq \omega \) and \( \abs{J} \geq 2 \), the forcing poset \( \operatorname{Fn}(I, J) \) is a separative partial order without a minimal element.
For sets \( I, J \) such that \( \abs{I} \geq \omega \) and \( \abs{J} \geq 2 \), the forcing poset \( \Fn(I, J) \) is a separative partial order without a minimal element.
\end{proposition}
\begin{proposition}
(\( \mathsf{ZFC} \))
Expand Down
Loading

0 comments on commit 45c3666

Please sign in to comment.