Skip to content

Commit

Permalink
Merge pull request #11 from Kaiwen-S/patch-1
Browse files Browse the repository at this point in the history
Update 01_fourier_series.tex
  • Loading branch information
zeramorphic authored Sep 10, 2023
2 parents cfe0386 + 5e87a0d commit 0481fe9
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion ib/methods/01_fourier_series.tex
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@ \subsection{Parseval's theorem}
Suppose \( f \) has Fourier coefficients \( a_i, b_i \).
Then
\begin{align*}
\int_0^{2L} [f(x)]^2 \dd{x} & = \int_0^2L \qty[ \frac{1}{2}a_0 + \sum_{n=1}^\infty a_k \cos \frac{k \pi x}{L} + \sum_{n=1}^\infty b_n \sin \frac{n\pi x}{L} ]^2 \dd{x} \\
\int_0^{2L} [f(x)]^2 \dd{x} & = \int_0^{2L} \qty[ \frac{1}{2}a_0 + \sum_{n=1}^\infty a_k \cos \frac{k \pi x}{L} + \sum_{n=1}^\infty b_n \sin \frac{n\pi x}{L} ]^2 \dd{x} \\
\intertext{We can remove cross terms, since the basis functions are orthogonal.}
& = \int_0^{2L} \qty[ \frac{1}{4} a_0^2 + \sum_{n=1}^\infty a_n^2 \cos^2 \frac{n\pi x}{L} + \sum_{n=1}^\infty b_n^2 \sin^2 \frac{n\pi x}{L} ] \dd{x} \\
& = L \qty[ \frac{1}{2} a_0^2 + \sum_{n=1}^\infty (a_n^2 + b_n^2) ]
Expand Down

0 comments on commit 0481fe9

Please sign in to comment.