-
Notifications
You must be signed in to change notification settings - Fork 144
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs(frontend-python): add statistics tutorial
- Loading branch information
1 parent
6a9b540
commit 3018bef
Showing
2 changed files
with
125 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
# Statistics | ||
|
||
Concrete analyzes all compiled circuits and calculates some statistics. These statistics can be used to find bottlenecks and compare circuits. Statistics are calculated in terms of basic operations. There are 6 basic operations in Concrete: | ||
|
||
- **clear addition:** x + y where x is encrypted and y is clear | ||
- **encrypted addition:** x + y where both x and y are encrypted | ||
- **clear multiplication:** x * y where x is encrypted and y is clear | ||
- **encrypted negation:** -x where x is encrypted | ||
- **key switch:** building block for table lookups | ||
- **packing key switch:** building block for table lookups | ||
- **programmable bootstrapping:** building block for table lookups | ||
|
||
You can print all statistics using `show_statistics` configuration option: | ||
|
||
```python | ||
from concrete import fhe | ||
|
||
@fhe.compiler({"x": "encrypted"}) | ||
def f(x): | ||
return (x**2) + (2*x) + 4 | ||
|
||
inputset = range(2**2) | ||
circuit = f.compile(inputset, show_statistics=True) | ||
``` | ||
|
||
This code will print: | ||
|
||
``` | ||
Statistics | ||
-------------------------------------------------------------------------------- | ||
size_of_secret_keys: 22648 | ||
size_of_bootstrap_keys: 51274176 | ||
size_of_keyswitch_keys: 64092720 | ||
size_of_inputs: 16392 | ||
size_of_outputs: 16392 | ||
p_error: 9.627450598589458e-06 | ||
global_p_error: 9.627450598589458e-06 | ||
complexity: 99198195.0 | ||
programmable_bootstrap_count: 1 | ||
programmable_bootstrap_count_per_parameter: { | ||
BootstrapKeyParam(polynomial_size=2048, glwe_dimension=1, input_lwe_dimension=781, level=1, base_log=23, variance=9.940977002694397e-32): 1 | ||
} | ||
key_switch_count: 1 | ||
key_switch_count_per_parameter: { | ||
KeyswitchKeyParam(level=5, base_log=3, variance=1.939836732335308e-11): 1 | ||
} | ||
packing_key_switch_count: 0 | ||
clear_addition_count: 1 | ||
clear_addition_count_per_parameter: { | ||
LweSecretKeyParam(dimension=2048): 1 | ||
} | ||
encrypted_addition_count: 1 | ||
encrypted_addition_count_per_parameter: { | ||
LweSecretKeyParam(dimension=2048): 1 | ||
} | ||
clear_multiplication_count: 1 | ||
clear_multiplication_count_per_parameter: { | ||
LweSecretKeyParam(dimension=2048): 1 | ||
} | ||
encrypted_negation_count: 0 | ||
-------------------------------------------------------------------------------- | ||
``` | ||
|
||
{% hint style="info" %} | ||
Each of these properties can be directly accessed on the circuit (e.g., `circuit.programmable_bootstrap_count`). | ||
{% endhint %} | ||
|
||
## Tags | ||
|
||
Circuit analysis also considers [tags](../tutorial/tagging.md)! | ||
|
||
Imagine you have a neural network with 10 layers, each of them tagged. You can easily see the amount of additions and multiplications required for matrix multiplications per layer: | ||
|
||
``` | ||
Statistics | ||
-------------------------------------------------------------------------------- | ||
clear_multiplication_count_per_tag: { | ||
/model/model: 53342 | ||
/model/model.0/Gemm: 14720 | ||
/model/model.0/Gemm.matmul: 14720 | ||
/model/model.2/Gemm: 11730 | ||
/model/model.2/Gemm.matmul: 11730 | ||
/model/model.4/Gemm: 9078 | ||
/model/model.4/Gemm.matmul: 9078 | ||
/model/model.6/Gemm: 6764 | ||
/model/model.6/Gemm.matmul: 6764 | ||
/model/model.8/Gemm: 4788 | ||
/model/model.8/Gemm.matmul: 4788 | ||
/model/model.10/Gemm: 3150 | ||
/model/model.10/Gemm.matmul: 3150 | ||
/model/model.12/Gemm: 1850 | ||
/model/model.12/Gemm.matmul: 1850 | ||
/model/model.14/Gemm: 888 | ||
/model/model.14/Gemm.matmul: 888 | ||
/model/model.16/Gemm: 264 | ||
/model/model.16/Gemm.matmul: 264 | ||
/model/model.18/Gemm: 110 | ||
/model/model.18/Gemm.matmul: 110 | ||
} | ||
encrypted_addition_count_per_tag: { | ||
/model/model: 53342 | ||
/model/model.0/Gemm: 14720 | ||
/model/model.0/Gemm.matmul: 14720 | ||
/model/model.2/Gemm: 11730 | ||
/model/model.2/Gemm.matmul: 11730 | ||
/model/model.4/Gemm: 9078 | ||
/model/model.4/Gemm.matmul: 9078 | ||
/model/model.6/Gemm: 6764 | ||
/model/model.6/Gemm.matmul: 6764 | ||
/model/model.8/Gemm: 4788 | ||
/model/model.8/Gemm.matmul: 4788 | ||
/model/model.10/Gemm: 3150 | ||
/model/model.10/Gemm.matmul: 3150 | ||
/model/model.12/Gemm: 1850 | ||
/model/model.12/Gemm.matmul: 1850 | ||
/model/model.14/Gemm: 888 | ||
/model/model.14/Gemm.matmul: 888 | ||
/model/model.16/Gemm: 264 | ||
/model/model.16/Gemm.matmul: 264 | ||
/model/model.18/Gemm: 110 | ||
/model/model.18/Gemm.matmul: 110 | ||
} | ||
-------------------------------------------------------------------------------- | ||
``` |