Skip to content

A simple recommendation evaluation system, the algorithm includes SLIM, LFM, ItemCF, UserCF

License

Notifications You must be signed in to change notification settings

yanghailong-study/SLIM-recommendation

 
 

Repository files navigation

SLIM-recommendation

This project includes a simple recommendation system, several recommendation algorithms.

Recommendation algorithm includes SLIM(Sparse LInear Methods), LFM(Latent Factor Model), ItemCF, UserCF.

SLIM uses coordinate decent.

LFM uses stochastic gradient descent(SGD).

基于SLIM的推荐方法研究.pdf is my graduation thesis, which explains SLIM theory and my experiment.

If you are interested in recommender system, my developing Recommender-System is recommended for you, it is implements in tensorflow2!


本工程主要包括一个简单的推荐系统,以及几个推荐算法。

推荐算法包括稀疏线性算法,隐语义模型算法,基于物品的协同过滤算法,基于用户的协同过滤算法。

稀疏线性算法主要使用坐标下降法求解。

隐语义模型算法主要使用随机梯度下降法求解。

基于SLIM的推荐方法研究.pdf是我的本科毕设论文,里面详细讲解了SLIM推荐算法的原理和我的实验过程。

如果你对推荐系统很感兴趣,推荐一下我正在开发的推荐系统,它是用最新的tensorflow2写的!

About

A simple recommendation evaluation system, the algorithm includes SLIM, LFM, ItemCF, UserCF

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.8%
  • Perl 2.2%
  • Shell 2.0%