Skip to content

Commit

Permalink
bench: Add wave3d setup
Browse files Browse the repository at this point in the history
  • Loading branch information
georgebisbas committed Aug 5, 2023
1 parent 8c8858a commit 72fb27d
Show file tree
Hide file tree
Showing 3 changed files with 245 additions and 1 deletion.
115 changes: 115 additions & 0 deletions fast/setup_wave3d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# Script to save initial data for the Acoustic wave execution benchmark
# Based on the implementation of the Devito acoustic example implementation
# Not using Devito's source injection abstraction
import sys
import numpy as np

from devito import (TimeFunction, Eq, Operator, solve, norm,
configuration)
from examples.seismic import RickerSource
from examples.seismic import Model, TimeAxis
from fast.bench_utils import plot_3dfunc
from devito.tools import as_tuple

import argparse
np.set_printoptions(threshold=np.inf)


parser = argparse.ArgumentParser(description='Process arguments.')

parser.add_argument("-d", "--shape", default=(16, 16, 16), type=int, nargs="+",
help="Number of grid points along each axis")
parser.add_argument("-so", "--space_order", default=4,
type=int, help="Space order of the simulation")
parser.add_argument("-to", "--time_order", default=2,
type=int, help="Time order of the simulation")
parser.add_argument("-nt", "--nt", default=20,
type=int, help="Simulation time in millisecond")
parser.add_argument("-bls", "--blevels", default=1, type=int, nargs="+",
help="Block levels")
parser.add_argument("-plot", "--plot", default=False, type=bool, help="Plot2D")
parser.add_argument("-devito", "--devito", default=False, type=bool, help="Devito run")
parser.add_argument("-xdsl", "--xdsl", default=False, type=bool, help="xDSL run")
args = parser.parse_args()


mpiconf = configuration['mpi']

# Define a physical size
# nx, ny, nz = args.shape
nt = args.nt

shape = (args.shape) # Number of grid point (nx, ny, nz)
spacing = as_tuple(10.0 for _ in range(len(shape))) # Grid spacing in m. The domain size is now 1km by 1km
origin = as_tuple(0.0 for _ in range(len(shape))) # What is the location of the top left corner.
# This is necessary to define
# the absolute location of the source and receivers

# Define a velocity profile. The velocity is in km/s
v = np.empty(shape, dtype=np.float32)
v[:, :, :] = 1

# With the velocity and model size defined, we can create the seismic model that
# encapsulates this properties. We also define the size of the absorbing layer as
# 10 grid points
so = args.space_order
to = args.time_order

model = Model(vp=v, origin=origin, shape=shape, spacing=spacing,
space_order=so, nbl=0)

# plot_velocity(model)

t0 = 0. # Simulation starts a t=0
tn = nt # Simulation last 1 second (1000 ms)
dt = model.critical_dt # Time step from model grid spacing
print("dt is:", dt)

time_range = TimeAxis(start=t0, stop=tn, step=dt)

# The source is positioned at a $20m$ depth and at the middle of the
# $x$ axis ($x_{src}=500m$),
# with a peak wavelet frequency of $10Hz$.
f0 = 0.010 # Source peak frequency is 10Hz (0.010 kHz)
src = RickerSource(name='src', grid=model.grid, f0=f0,
npoint=1, time_range=time_range)

# First, position source centrally in all dimensions, then set depth
src.coordinates.data[0, :] = np.array(model.domain_size) * .5

# We can plot the time signature to see the wavelet
# src.show()

# Define the wavefield with the size of the model and the time dimension
u = TimeFunction(name="u", grid=model.grid, time_order=to, space_order=so)
# Another one to clone data
u2 = TimeFunction(name="u", grid=model.grid, time_order=to, space_order=so)
ub = TimeFunction(name="ub", grid=model.grid, time_order=to, space_order=so)

# We can now write the PDE
# pde = model.m * u.dt2 - u.laplace + model.damp * u.dt
pde = u.dt2 - u.laplace

stencil = Eq(u.forward, solve(pde, u.forward))
# stencil

# Finally we define the source injection and receiver read function to generate
# the corresponding code
# print(time_range)

print("Init norm:", np.linalg.norm(u.data[:]))
src_term = src.inject(field=u.forward, expr=src * dt**2 / model.m)
op0 = Operator([stencil] + src_term, subs=model.spacing_map, name='SourceDevitoOperator')

# Run with source and plot
op0.apply(time=time_range.num-1, dt=model.critical_dt)

if len(shape) == 3:
if args.plot:
plot_3dfunc(u)

# Save Data here
shape_str = '_'.join(str(item) for item in shape)
np.save("so%s_critical_dt%s.npy" % (so, shape_str), model.critical_dt, allow_pickle=True)
np.save("so%s_wave_dat%s.npy" % (so, shape_str), u.data[:], allow_pickle=True)
np.save("so%s_grid_extent%s.npy" % (so, shape_str), model.grid.extent, allow_pickle=True)
2 changes: 1 addition & 1 deletion fast/wave2d_b.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
# Define a physical size
# nx, ny, nz = args.shape
nt = args.nt
so = args.so
so = args.space_order

shape = (args.shape) # Number of grid point (nx, ny, nz)
shape_str = '_'.join(str(item) for item in shape)
Expand Down
129 changes: 129 additions & 0 deletions fast/wave3d_b.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# Based on the implementation of the Devito acoustic example implementation
# Not using Devito's source injection abstraction
import sys
import numpy as np

from devito import (TimeFunction, Eq, Operator, solve, norm,
XDSLOperator, configuration, Grid)
from examples.seismic import RickerSource
from examples.seismic import Model, TimeAxis, plot_image
from fast.bench_utils import plot_3dfunc
from devito.tools import as_tuple

import argparse
np.set_printoptions(threshold=np.inf)


parser = argparse.ArgumentParser(description='Process arguments.')

parser.add_argument("-d", "--shape", default=(16, 16, 16), type=int, nargs="+",
help="Number of grid points along each axis")
parser.add_argument("-so", "--space_order", default=4,
type=int, help="Space order of the simulation")
parser.add_argument("-to", "--time_order", default=2,
type=int, help="Time order of the simulation")
parser.add_argument("-nt", "--nt", default=20,
type=int, help="Simulation time in millisecond")
parser.add_argument("-bls", "--blevels", default=1, type=int, nargs="+",
help="Block levels")
parser.add_argument("-plot", "--plot", default=False, type=bool, help="Plot2D")
parser.add_argument("-devito", "--devito", default=False, type=bool, help="Devito run")
parser.add_argument("-xdsl", "--xdsl", default=False, type=bool, help="xDSL run")
args = parser.parse_args()


mpiconf = configuration['mpi']

# Define a physical size
# nx, ny, nz = args.shape
nt = args.nt
so = args.space_order

shape = (args.shape) # Number of grid point (nx, ny, nz)
shape_str = '_'.join(str(item) for item in shape)
spacing = as_tuple(10.0 for _ in range(len(shape))) # Grid spacing in m. The domain size is now 1km by 1km
origin = as_tuple(0.0 for _ in range(len(shape))) # What is the location of the top left corner.
domain_size = tuple((d-1) * s for d, s in zip(shape, spacing))
extent = np.load("so%s_grid_extent%s.npy" % (so, shape_str), allow_pickle=True)

grid = Grid(shape=shape, extent=as_tuple(extent))

# With the velocity and model size defined, we can create the seismic model that
# encapsulates this properties. We also define the size of the absorbing layer as
# 10 grid points
so = args.space_order
to = args.time_order

t0 = 0. # Simulation starts a t=0
tn = nt # Simulation last 1 second (1000 ms)

# Define the wavefield with the size of the model and the time dimension
u = TimeFunction(name="u", grid=grid, time_order=to, space_order=so)
# Another one to clone data
u2 = TimeFunction(name="u", grid=grid, time_order=to, space_order=so)
ub = TimeFunction(name="ub", grid=grid, time_order=to, space_order=so)

# We can now write the PDE
# pde = model.m * u.dt2 - u.laplace + model.damp * u.dt
# import pdb;pdb.set_trace()
pde = u.dt2 - u.laplace

stencil = Eq(u.forward, solve(pde, u.forward))

# print("Init Devito linalg norm 0 :", np.linalg.norm(u.data[0]))
# print("Init Devito linalg norm 1 :", np.linalg.norm(u.data[1]))
# print("Init Devito linalg norm 2 :", np.linalg.norm(u.data[2]))
# print("Norm of initial data:", norm(u))

configuration['mpi'] = 0
u2.data[:] = u.data[:]
configuration['mpi'] = mpiconf

u.data[:] = np.load("so%s_wave_dat%s.npy" % (so, shape_str), allow_pickle=True)
dt = np.load("so%s_critical_dt%s.npy" % (so, shape_str), allow_pickle=True)

# np.save("critical_dt%s.npy" % shape_str, model.critical_dt, allow_pickle=True)
# np.save("wave_dat%s.npy" % shape_str, u.data[:], allow_pickle=True)

if len(shape) == 3 and args.plot:
plot_3dfunc(u)

print("Init norm:", np.linalg.norm(u.data[:]))
# print("Init linalg norm:", np.linalg.norm(u.data[0]))
# print("Init linalg norm:", np.linalg.norm(u.data[1]))
# print("Init linalg norm:", np.linalg.norm(u.data[2]))


if args.devito:
# Run more with no sources now (Not supported in xdsl)
# op1 = Operator([stencil], name='DevitoOperator', subs=grid.spacing_map)
op1 = Operator([stencil], name='DevitoOperator')
op1.apply(time=nt, dt=dt)

configuration['mpi'] = 0
ub.data[:] = u.data[:]
configuration['mpi'] = mpiconf

if len(shape) == 3 and args.plot:
plot_3dfunc(u)

print("Devito norm:", norm(u))
# print("Devito linalg norm 0:", np.linalg.norm(u.data[0]))
# print("Devito linalg norm 1:", np.linalg.norm(u.data[1]))
# print("Devito linalg norm 2:", np.linalg.norm(u.data[2]))


if args.xdsl:

# Run more with no sources now (Not supported in xdsl)
xdslop = XDSLOperator([stencil], name='xDSLOperator')
xdslop.apply(time=nt, dt=dt)

if len(shape) == 3 and args.plot:
plot_3dfunc(u)

print("XDSL norm:", norm(u))

# print("XDSL output norm 0:", np.linalg.norm(u.data[0]))
# print("XDSL output norm 1:", np.linalg.norm(u.data[1]))
# print("XDSL output norm 2:", np.linalg.norm(u.data[2]))

0 comments on commit 72fb27d

Please sign in to comment.