Skip to content

Commit

Permalink
Support count:poisson for XGBRegressor (onnx#666)
Browse files Browse the repository at this point in the history
Signed-off-by: Xavier Dupre <[email protected]>
  • Loading branch information
xadupre authored Nov 23, 2023
1 parent 0b5bcf1 commit 1984712
Show file tree
Hide file tree
Showing 2 changed files with 41 additions and 7 deletions.
19 changes: 13 additions & 6 deletions onnxmltools/convert/xgboost/operator_converters/XGBoost.py
Original file line number Diff line number Diff line change
Expand Up @@ -250,19 +250,26 @@ def convert(scope, operator, container):
)

# add nodes
if objective == "count:poisson":
names = [scope.get_unique_variable_name("tree")]
del attr_pairs["base_values"]
else:
names = operator.output_full_names
container.add_node(
"TreeEnsembleRegressor",
operator.input_full_names,
operator.output_full_names,
names,
op_domain="ai.onnx.ml",
name=scope.get_unique_operator_name("TreeEnsembleRegressor"),
**attr_pairs,
)
# try:
# if len(inputs[0].type.tensor_type.shape.dim) > 0:
# output_dim = [inputs[0].type.tensor_type.shape.dim[0].dim_value, 1]
# except Exception:
# raise ValueError('Invalid/missing input dimension.')

if objective == "count:poisson":
cst = scope.get_unique_variable_name("half")
container.add_initializer(cst, TensorProto.FLOAT, [1], [0.5])
new_name = scope.get_unique_variable_name("exp")
container.add_node("Exp", names, [new_name])
container.add_node("Mul", [new_name, cst], operator.output_full_names)


class XGBClassifierConverter(XGBConverter):
Expand Down
29 changes: 28 additions & 1 deletion tests/xgboost/test_xgboost_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,33 @@ def test_xgb_regressor(self):
basename="SklearnXGBRegressor-Dec3",
)

def test_xgb_regressor_poisson(self):
iris = load_diabetes()
x = iris.data
y = iris.target
x_train, x_test, y_train, _ = train_test_split(
x, y, test_size=0.5, random_state=42
)
for nest in [5, 50]:
xgb = XGBRegressor(
objective="count:poisson",
random_state=0,
max_depth=3,
n_estimators=nest,
)
xgb.fit(x_train, y_train)
conv_model = convert_xgboost(
xgb,
initial_types=[("input", FloatTensorType(shape=[None, None]))],
target_opset=TARGET_OPSET,
)
dump_data_and_model(
x_test.astype("float32"),
xgb,
conv_model,
basename=f"SklearnXGBRegressorPoisson{nest}-Dec3",
)

def test_xgb_classifier(self):
xgb, x_test = _fit_classification_model(XGBClassifier(), 2)
conv_model = convert_xgboost(
Expand Down Expand Up @@ -650,5 +677,5 @@ def test_xgb_classifier_hinge(self):


if __name__ == "__main__":
# TestXGBoostModels().test_xgboost_booster_classifier_multiclass_softprob()
TestXGBoostModels().test_xgb_regressor_poisson()
unittest.main(verbosity=2)

0 comments on commit 1984712

Please sign in to comment.