Skip to content

Deployed several machine learning models (SVC, Naïve Bayes, KMeans, CNN, Decision Trees/Forests) using GridSearch, RandomSearch, and custom-made Search on multiple datasets from UCI and CIFAR datasources using Scikit-Learn and PyTorch

License

Notifications You must be signed in to change notification settings

wboughattas/UCI-CIFAR-Various-Analyses

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README for UCI-CIFAR-Various-Analyses

Our project relies mainly on sklearn, pandas, PyTorch, and matplotlib. Running the code requires the following files:

   ./requirements.txt    <-- python environment requirements.txt file
   ./main.py       <-- To run the entire project

Utilities

Our code utilities for classification, regression, and novelty component require the following files:

   ./Models/import_data.py        <-- script to read raw data files
   ./Models/modelling.py           <-- script to train and evaluate models
   ./Models/plotting.py            <-- script to create plots
   ./Models/export_data.py        <-- script to export plots and model evaluations
   ./Models/Training_parameters/*.py     <-- model parameters for each dataset

Our code utilities for classifier interpretability require the following files:

   ./Models/import_batches.py                   <-- script to import batches
   ./Models/Classifier_interpretability/classifier_interpretability.py    <-- script to run models
   ./Models/Classifier_interpretability/*.pkl              <-- script to store trained models

  • The files should be run in the order: main.py
  • GPU is not required.
  • The main.py script creates a "Results" directory (for CL, REGR) and an "out_img" directory (for DTC, CNN) and saves results there.
  • Training takes ~1 day (4 cores 3.5Ghz).
  • To lower training time to 2 min:
    • Access ./Models/import_data.py, forward to the read_files_param_grid variable at the bottom, comment out every dataset (and their parameters) except one. remember the dataset.
    • Access ./Models/Training_parameters/{dataset_in_read_files_param_grid}.py and comment out most models
    • Access ./main.py and comment out the last line: classifier_interpretability.initialize_ci()
    • execute ./main.py

About

Deployed several machine learning models (SVC, Naïve Bayes, KMeans, CNN, Decision Trees/Forests) using GridSearch, RandomSearch, and custom-made Search on multiple datasets from UCI and CIFAR datasources using Scikit-Learn and PyTorch

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published