Skip to content

Commit

Permalink
4.0: PCA refinement CNS 2022
Browse files Browse the repository at this point in the history
  • Loading branch information
skleber committed Oct 16, 2022
1 parent 2b595d4 commit 7857164
Show file tree
Hide file tree
Showing 7 changed files with 3,008 additions and 95 deletions.
1,931 changes: 1,918 additions & 13 deletions src/nemere/inference/formatRefinement.py

Large diffs are not rendered by default.

320 changes: 314 additions & 6 deletions src/nemere/inference/segmentHandler.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
"""
Batch handling of multiple segments.
"""
from itertools import chain

import numpy
import copy
from typing import List, Dict, Tuple, Union, Sequence, TypeVar, Iterable
Expand All @@ -10,7 +12,7 @@
from nemere.utils.loader import BaseLoader
from nemere.inference.segments import MessageSegment, HelperSegment, TypedSegment, AbstractSegment
from nemere.inference.analyzers import MessageAnalyzer, Value
from nemere.inference.templates import AbstractClusterer, TypedTemplate
from nemere.inference.templates import AbstractClusterer, TypedTemplate, DelegatingDC, MemmapDC


def segmentMeans(segmentsPerMsg: List[List[MessageSegment]]):
Expand Down Expand Up @@ -126,6 +128,10 @@ def segmentsFromLabels(analyzer, labels) -> Tuple[TypedSegment]:


def segmentsFromSymbols(symbols: List[Symbol]):
"""
:param symbols: List of Netzob symbols.
:return: List of messages represented by a list of segments each.
"""
msgflds = [(msg,flds) for s in symbols for msg,flds in s.getMessageCells().items()]
segmentedMessages = []
for msg,flds in msgflds:
Expand Down Expand Up @@ -319,9 +325,140 @@ def refinements(segmentsPerMsg: List[List[MessageSegment]], **kwargs) -> List[Li
:param segmentsPerMsg: a list of one list of segments per message.
:return: refined segments in list per message
"""
return nemetylRefinements(segmentsPerMsg)
return zerocharPCAmocoSFrefinements(segmentsPerMsg, **kwargs)


def pcaMocoRefinements(segmentsPerMsg: List[List[MessageSegment]], **kwargs) -> List[List[MessageSegment]]:
"""
Refine the segmentation using specific improvements for the feature:
Inflections of gauss-filtered bit-congruence deltas.
:param segmentsPerMsg: a list of one list of segments per message.
:return: refined segments in list per message
"""
from itertools import chain
from nemere.inference.formatRefinement import RelocatePCA, CropDistinct

print("Refine segmentation (2xPCA, moco refinements)...")

if "collectedSubclusters" in kwargs:
kwargs["collectEvaluationData"] = kwargs["collectedSubclusters"]
del kwargs["collectedSubclusters"]

# charPass1 = charRefinements(segmentsPerMsg)
# refinedSegmentedMessages = RelocatePCA.refineSegments(charPass1, dc)

# pcaRound = charRefinements(segmentsPerMsg)
pcaRound = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)
for _ in range(2):
refinementDC = DelegatingDC(list(chain.from_iterable(pcaRound)))
pcaRound = RelocatePCA.refineSegments(pcaRound, refinementDC, **kwargs)

# additionally perform most common values refinement
moco = CropDistinct.countCommonValues(pcaRound)
print([m.hex() for m in moco])
refinedSM = list()
for msg in pcaRound:
croppedMsg = CropDistinct(msg, moco).split()
refinedSM.append(croppedMsg)

charPass2 = charRefinements(refinedSM)

return charPass2


def pcaMocoDoubleCharRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]], **kwargs
) -> List[List[MessageSegment]]:
"""
perform the char refinements after 2 passes of PCA and moco.
TODO Is this better than pcaMocoRefinements
:param segmentsPerMsg:
:param kwargs:
:return:
"""
import nemere.inference.formatRefinement as refine

print("Refine segmentation (2xPCA, moco refinements)...")

if "collectedSubclusters" in kwargs:
kwargs["collectEvaluationData"] = kwargs["collectedSubclusters"]
del kwargs["collectedSubclusters"]

valueSegsPerMsg = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)

pcaRound = charRefinements(valueSegsPerMsg)
for _ in range(2):
refinementDC = DelegatingDC(list(chain.from_iterable(pcaRound)))
pcaRound = refine.RelocatePCA.refineSegments(pcaRound, refinementDC, **kwargs)

# additionally perform most common values refinement
moco = refine.CropDistinct.countCommonValues(pcaRound)
print([m.hex() for m in moco])
refinedSM = list()
for msg in pcaRound:
croppedMsg = refine.CropDistinct(msg, moco).split()
refinedSM.append(croppedMsg)
return charRefinements(refinedSM)


def pcaRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]], **kwargs) -> List[List[MessageSegment]]:
"""
Refine the segmentation using specific improvements for the feature:
Inflections of gauss-filtered bit-congruence deltas.
:param segmentsPerMsg: a list of one list of segments per message.
:param kwargs: is forwarded to RelocatePCA.refineSegments
:return: refined segments in list per message
"""
from itertools import chain
from nemere.inference.formatRefinement import RelocatePCA

if "collectedSubclusters" in kwargs:
kwargs["collectEvaluationData"] = kwargs["collectedSubclusters"]
del kwargs["collectedSubclusters"]

print("Refine segmentation (PCA refinements)...")

valueSegsPerMsg = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)

# char refinement before and after
charPass1 = charRefinements(valueSegsPerMsg)
refinementDC = DelegatingDC(list(chain.from_iterable(charPass1)))
refinedSM = RelocatePCA.refineSegments(charPass1, refinementDC, **kwargs)
charPass2 = charRefinements(refinedSM)

return charPass2


def pcaPcaRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]], **kwargs) -> List[List[MessageSegment]]:
"""
Refine the segmentation using specific improvements for the feature:
Inflections of gauss-filtered bit-congruence deltas.
:param segmentsPerMsg: a list of one list of segments per message.
:param kwargs: is forwarded to RelocatePCA.refineSegments
:return: refined segments in list per message
"""
from itertools import chain
from nemere.inference.formatRefinement import RelocatePCA

if "collectedSubclusters" in kwargs:
kwargs["collectEvaluationData"] = kwargs["collectedSubclusters"]
del kwargs["collectedSubclusters"]

print("Refine segmentation (2xPCA refinements)...")

# char refinement before and after
# pcaRound = charRefinements(segmentsPerMsg)
pcaRound = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)

for _ in range(2):
refinementDC = DelegatingDC(list(chain.from_iterable(pcaRound)))
pcaRound = RelocatePCA.refineSegments(pcaRound, refinementDC, **kwargs)
refinedSM = charRefinements(pcaRound)

return refinedSM


def baseRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]]) -> List[List[MessageSegment]]:
Expand Down Expand Up @@ -353,6 +490,25 @@ def baseRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]]) -> List[
return newstuff


def zeroBaseRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]], **kwargs) -> List[List[MessageSegment]]:
import nemere.inference.formatRefinement as refine

if "collectedSubclusters" in kwargs:
kwargs["collectEvaluationData"] = kwargs["collectedSubclusters"]
del kwargs["collectedSubclusters"]
littleEndian = "littleEndian" in kwargs and kwargs["littleEndian"] == True

print("Refine segmentation (zero-slices refinements)...")

valueSegsPerMsg = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)

combinedRefinedSegments = [refine.BlendZeroSlices(list(msg)).blend(littleEndian=littleEndian)
for msg in valueSegsPerMsg]
return baseRefinements(combinedRefinedSegments)


def zeroPCARefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]]) -> List[List[MessageSegment]]:
return pcaRefinements(zeroBaseRefinements(segmentsPerMsg))


def nemetylRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]]) -> List[List[MessageSegment]]:
Expand Down Expand Up @@ -446,6 +602,151 @@ def originalRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]]) -> L
return refinedPerMsg


def zerocharPCAmocoRefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]], **kwargs
) -> List[List[MessageSegment]]:
import nemere.inference.formatRefinement as refine

if "collectedSubclusters" in kwargs:
kwargs["collectEvaluationData"] = kwargs["collectedSubclusters"]
del kwargs["collectedSubclusters"]
littleEndian = "littleEndian" in kwargs and kwargs["littleEndian"] == True

print("Refine segmentation (zero-slices, char, 2xPCA, moco refinements)...")

valueSegsPerMsg = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)

# .blend(True) to omit single zeros: in most cases (dns, nbns, smb), quality deteriorates.
zeroSlicedMessages = [refine.BlendZeroSlices(list(msg)).blend(False, littleEndian) for msg in valueSegsPerMsg]
pcaRound = [refine.CropChars(segs).split() for segs in zeroSlicedMessages]
for _ in range(2):
refinementDC = MemmapDC(list(chain.from_iterable(pcaRound)))
pcaRound = refine.RelocatePCA.refineSegments(pcaRound, refinementDC, **kwargs)

# additionally perform most common values refinement
moco = refine.CropDistinct.countCommonValues(pcaRound)
print([m.hex() for m in moco])
refinedSM = list()
for msg in pcaRound:
croppedMsg = refine.CropDistinct(msg, moco).split()
refinedSM.append(croppedMsg)

# decreases FMS slightly for dhcp and smb
# refinedSM = charRefinements(refinedSM)

return refinedSM

# now needs recalculation of segment distances in dc


def pcaMocoSFrefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]], **kwargs
) -> List[List[MessageSegment]]:
"""
Refine the segmentation according to the (unpublished) NEMEPCA paper method using specific improvements
for the feature: Inflections of gauss-filtered bit-congruence deltas.
* PCA
* CropDistinct
* SplitFixedv2
:param segmentsPerMsg: a list of one list of segments per message.
:param kwargs: For evaluation:
* comparator: Encapsulated true field bounds to compare results to.
* reportFolder: For evaluation: Destination path to write results and statistics to.
* collectedSubclusters: For evaluation: Collect the intermediate (sub-)clusters generated during
the analysis of the segments.
* and others accepted by refine.RelocatePCA.refineSegments()
:return: refined segments in list per message
:raises ClusterAutoconfException: In case no clustering can be performed due to failed parameter autodetection.
"""
import nemere.inference.formatRefinement as refine

if "collectedSubclusters" in kwargs:
kwargs["collectEvaluationData"] = kwargs["collectedSubclusters"]
del kwargs["collectedSubclusters"]

print("Refine segmentation (PCA, CropDistinct, SplitFixedv2 refinements)...")

pcaRound = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)
for _ in range(1):
refinementDC = MemmapDC(list(chain.from_iterable(pcaRound)))
pcaRound = refine.RelocatePCA.refineSegments(pcaRound, refinementDC, **kwargs)

# additionally perform most common values refinement
moco = refine.CropDistinct.countCommonValues(pcaRound)
print([m.hex() for m in moco])
refinedSM = list()
for msg in pcaRound:
croppedMsg = refine.CropDistinct(msg, moco).split()
# and: first segments that are longer than 2 and at least two bytes are less than \x10
# (that have the first two bytes being non-zero)
if croppedMsg[0].length > 2 and sum(b < 0x10 for b in croppedMsg[0].bytes) >= 2:
splitfixed = refine.SplitFixed(croppedMsg).split(0, 1)
refinedSM.append(splitfixed)
else:
refinedSM.append(croppedMsg)
return refinedSM

def zerocharPCAmocoSFrefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]], **kwargs
) -> List[List[MessageSegment]]:
"""
Refine the segmentation according to the (unpublished) NEMEPCA paper method using specific improvements
for the feature: Inflections of gauss-filtered bit-congruence deltas.
* NEMESYS
* NullBytes
* CropChars
* PCA
* CropDistinct
* SplitFixedv2
:param segmentsPerMsg: a list of one list of segments per message.
:param kwargs: For evaluation:
* comparator: Encapsulated true field bounds to compare results to.
* reportFolder: For evaluation: Destination path to write results and statistics to.
* collectedSubclusters: For evaluation: Collect the intermediate (sub-)clusters generated during
the analysis of the segments.
* and others accepted by refine.RelocatePCA.refineSegments()
:return: refined segments in list per message
:raises ClusterAutoconfException: In case no clustering can be performed due to failed parameter autodetection.
"""
import nemere.inference.formatRefinement as refine

if "collectedSubclusters" in kwargs:
kwargs["collectEvaluationData"] = kwargs["collectedSubclusters"]
del kwargs["collectedSubclusters"]
littleEndian = "littleEndian" in kwargs and kwargs["littleEndian"] == True

print("Refine segmentation (NullBytes, CropChars)...")

valueSegsPerMsg = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)

# .blend(True) to omit single zeros: in most cases (dns, nbns, smb), quality deteriorates.
zeroSlicedMessages = [refine.BlendZeroSlices(list(msg)).blend(False, littleEndian) for msg in valueSegsPerMsg]
pcaRound = [refine.CropChars(segs).split() for segs in zeroSlicedMessages]
return pcaMocoSFrefinements(pcaRound, **kwargs)

def entropymergeZeroCharPCAmocoSFrefinements(segmentsPerMsg: Sequence[Sequence[MessageSegment]], **kwargs
) -> List[List[MessageSegment]]:
import nemere.inference.formatRefinement as refine

print("Refine segmentation (Merge consecutive random segments)...")
valueSegsPerMsg = MessageAnalyzer.convertAnalyzers(segmentsPerMsg, Value)
entropyMergedMessages = None
newMergedMessages = valueSegsPerMsg
# repeat merging as long as there are segments to merge left that match the conditions
while newMergedMessages != entropyMergedMessages:
entropyMergedMessages = newMergedMessages
newMergedMessages = [refine.EntropyMerger(list(msg)).merge() for msg in entropyMergedMessages]
refinedMessages = zerocharPCAmocoSFrefinements(newMergedMessages, **kwargs)
return refinedMessages
# return [refine.EntropyMerger(list(msg)).merge() for msg in refinedMessages]


# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # End: Refinements # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #


T = TypeVar('T')
def matrixFromTpairs(distances: Iterable[Tuple[T,T,float]], segmentOrder: Sequence[T], identity=0, incomparable=1,
simtrx: numpy.ndarray=None) -> numpy.ndarray:
Expand Down Expand Up @@ -619,6 +920,12 @@ def filterSegments(segments: Iterable[MessageSegment]) -> List[MessageSegment]:
return filteredSegments

def isExtendedCharSeq(values: bytes, meanCorridor=(50, 115), minLen=6):
"""
:param values: Byte values to test for being a character sequence.
:param meanCorridor: Corridor of allowed mean values of non-null values in the bytes
:param minLen: Minimum length of the byte string to be considered as a character sequence.
:return: The given bytes string is likely a character sequence.
"""
vallen = len(values)
nonzeros = [v for v in values if v > 0x00]
return (vallen >= minLen
Expand Down Expand Up @@ -655,12 +962,13 @@ def filterChars(segments: Iterable[AbstractSegment], meanCorridor=(50, 115), min

def wobbleSegmentInMessage(segment: MessageSegment):
"""
At start for now.
"Wobbles" segment byte values against its own start offsets.
For end if would be, e. g.: if segment.nextOffset < len(segment.message.data): segment.nextOffset + 1
TODO Instead of the start offsets, for the end if would be, e. g.:
if segment.nextOffset < len(segment.message.data): segment.nextOffset + 1
:param segment:
:return:
:param segment: Segment to wobble
:return: Wobbled segments
"""
wobbles = [segment]

Expand Down
Loading

0 comments on commit 7857164

Please sign in to comment.