Material for the "Advanced topics in single-cell analysis" course (2022 edition)
For more information and to apply, please visit: https://www.sib.swiss/training/course/20220426_ADVSC
- Emma Dann
- Pierre-Luc Germain
- Giovanni Palla
- Panagiotis Papasaikas
- Mark Robinson
- Sebastien Smallwood
- Charlotte Soneson
- Michael Stadler
- Kevin A Yamauchi
Tuesday, April 26 | |
---|---|
9:00 - 9:30 | Welcome and setup of working environment |
9:30 - 10:00 | Combining the best of two worlds: Python + R (M. Stadler, slides) |
10:00 - 10:15 | Break |
10:15 - 11:15 | Combining the best of two worlds: Python + R (M. Stadler) |
11:15 - 12:00 | Differential analysis (M. Robinson, P-L. Germain) |
12:00 - 13:30 | Lunch |
13:30 - 15:00 | Differential analysis (M. Robinson, P-L. Germain) |
15:00 - 15:15 | Break |
15:15 - 16:30 | RNA velocity (C. Soneson, slides) |
16:30 - 16:45 | Break |
16:45 - 17:45 | RNA velocity (C. Soneson) |
Wednesday, April 27 | |
---|---|
9:00 - 10:00 | Generating single-cell data (S. Smallwood, slides) |
10:00 - 10:15 | Break |
10:15 - 11:15 | Multi-omics (E. Dann, slides: google doc) |
11:15 - 11:30 | Break |
11:30 - 12:30 | Multi-omics (E. Dann) |
12:30 - 14:00 | Lunch |
14:00 - 15:30 | Multi-omics (E. Dann) |
15:30 - 15:45 | Break |
15:45 - 17:30 | Multi-omics (E. Dann) |
Thursday, April 28 | |
---|---|
9:00 - 10:30 | Spatial transcriptomics (G. Palla, K. Yamauchi, slides) |
10:30 - 10:45 | Break |
10:45 - 12:00 | Spatial transcriptomics (G. Palla, K. Yamauchi) |
12:00 - 13:30 | Lunch |
13:30 - 15:30 | Spatial transcriptomics (G. Palla, K. Yamauchi) |
15:30 - 15:45 | Break |
15:45 - 17:30 | Spatial transcriptomics (G. Palla, K. Yamauchi) |
Friday, April 29 | |
---|---|
9:00 - 9:30 | Interactive visualization with iSEE (C. Soneson, slides) |
9:30 - 10:00 | Deep generative networks (P. Papasaikas, slides) |
10:00 - 10:15 | Break |
10:15 - 12:00 | Deep generative networks (P. Papasaikas) |
12:00 - 13:30 | Lunch |
13:30 - 15:30 | Deep generative networks (P. Papasaikas) |
15:30 - 15:45 | Break |
15:45 - 16:45 | Deep generative networks (P. Papasaikas) |
16:45 - 17:00 | Wrap-up |