Here is the tutorial series I prepared during the intelligent systems course.
We will disscuss the following topics in order:
- Pytorch Basics
- Gradient and Backpropagation
- Creating a Neural Net class using Inheritance of nn.Module
- Dataset and Data Loader attributes and examples
- How to implement CrossEntropyLoss(CEE) & BinaryCrossEntropyLoss(BCE) ?
- Different ways to define Activation functions using torch, torch.nn, torch.nn.functional
- A thorough example of implementing a Feedforward neural net using the MNIST dataset
- Transfer Learning (Fine-tuning & Freezing), saving the model's best performance
- Part1: https://youtu.be/8g_Wy6_Pv4o
- Part2: https://youtu.be/9s4mlX-fauU
- Part3: https://youtu.be/0tYNfyobT24
- Part4: https://youtu.be/0q1rTbNShic