-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Remove depenedncy on bsuite to support Python 3.12
- Loading branch information
Showing
4 changed files
with
213 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -21,5 +21,4 @@ optax | |
pytest | ||
wandb | ||
pytest-cov | ||
bsuite | ||
tqdm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
# python3 | ||
# pylint: disable=g-bad-file-header | ||
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
"""bsuite adapter for OpenAI gym run-loops.""" | ||
|
||
from typing import Any, Dict, Optional, Tuple, Union | ||
|
||
import dm_env | ||
from dm_env import specs | ||
import gym | ||
from gym import spaces | ||
import numpy as np | ||
|
||
# OpenAI gym step format = obs, reward, is_finished, other_info | ||
_GymTimestep = Tuple[np.ndarray, float, bool, Dict[str, Any]] | ||
|
||
|
||
class GymFromDMEnv(gym.Env): | ||
"""A wrapper that converts a dm_env.Environment to an OpenAI gym.Env.""" | ||
|
||
metadata = {"render.modes": ["human", "rgb_array"]} | ||
|
||
def __init__(self, env: dm_env.Environment): | ||
self._env = env # type: dm_env.Environment | ||
self._last_observation = None # type: Optional[np.ndarray] | ||
self.viewer = None | ||
self.game_over = False # Needed for Dopamine agents. | ||
|
||
def step(self, action: int) -> _GymTimestep: | ||
timestep = self._env.step(action) | ||
self._last_observation = timestep.observation | ||
reward = timestep.reward or 0.0 | ||
if timestep.last(): | ||
self.game_over = True | ||
return timestep.observation, reward, timestep.last(), {} | ||
|
||
def reset(self) -> np.ndarray: | ||
self.game_over = False | ||
timestep = self._env.reset() | ||
self._last_observation = timestep.observation | ||
return timestep.observation | ||
|
||
def render(self, mode: str = "rgb_array") -> Union[np.ndarray, bool]: | ||
if self._last_observation is None: | ||
raise ValueError( | ||
"Environment not ready to render. Call reset() first." | ||
) | ||
|
||
if mode == "rgb_array": | ||
return self._last_observation | ||
|
||
if mode == "human": | ||
if self.viewer is None: | ||
# pylint: disable=import-outside-toplevel | ||
# pylint: disable=g-import-not-at-top | ||
from gym.envs.classic_control import rendering | ||
|
||
self.viewer = rendering.SimpleImageViewer() | ||
self.viewer.imshow(self._last_observation) | ||
return self.viewer.isopen | ||
|
||
@property | ||
def action_space(self) -> spaces.Discrete: | ||
action_spec = self._env.action_spec() # type: specs.DiscreteArray | ||
return spaces.Discrete(action_spec.num_values) | ||
|
||
@property | ||
def observation_space(self) -> spaces.Box: | ||
obs_spec = self._env.observation_spec() # type: specs.Array | ||
if isinstance(obs_spec, specs.BoundedArray): | ||
return spaces.Box( | ||
low=float(obs_spec.minimum), | ||
high=float(obs_spec.maximum), | ||
shape=obs_spec.shape, | ||
dtype=obs_spec.dtype, | ||
) | ||
return spaces.Box( | ||
low=-float("inf"), | ||
high=float("inf"), | ||
shape=obs_spec.shape, | ||
dtype=obs_spec.dtype, | ||
) | ||
|
||
@property | ||
def reward_range(self) -> Tuple[float, float]: | ||
reward_spec = self._env.reward_spec() | ||
if isinstance(reward_spec, specs.BoundedArray): | ||
return reward_spec.minimum, reward_spec.maximum | ||
return -float("inf"), float("inf") | ||
|
||
def __getattr__(self, attr): | ||
"""Delegate attribute access to underlying environment.""" | ||
return getattr(self._env, attr) | ||
|
||
|
||
def space2spec(space: gym.Space, name: str = None): | ||
"""Converts an OpenAI Gym space to a dm_env spec or nested structure of specs. | ||
Box, MultiBinary and MultiDiscrete Gym spaces are converted to BoundedArray | ||
specs. Discrete OpenAI spaces are converted to DiscreteArray specs. Tuple and | ||
Dict spaces are recursively converted to tuples and dictionaries of specs. | ||
Args: | ||
space: The Gym space to convert. | ||
name: Optional name to apply to all return spec(s). | ||
Returns: | ||
A dm_env spec or nested structure of specs, corresponding to the input | ||
space. | ||
""" | ||
if isinstance(space, spaces.Discrete): | ||
return specs.DiscreteArray( | ||
num_values=space.n, dtype=space.dtype, name=name | ||
) | ||
|
||
elif isinstance(space, spaces.Box): | ||
return specs.BoundedArray( | ||
shape=space.shape, | ||
dtype=space.dtype, | ||
minimum=space.low, | ||
maximum=space.high, | ||
name=name, | ||
) | ||
|
||
elif isinstance(space, spaces.MultiBinary): | ||
return specs.BoundedArray( | ||
shape=space.shape, | ||
dtype=space.dtype, | ||
minimum=0.0, | ||
maximum=1.0, | ||
name=name, | ||
) | ||
|
||
elif isinstance(space, spaces.MultiDiscrete): | ||
return specs.BoundedArray( | ||
shape=space.shape, | ||
dtype=space.dtype, | ||
minimum=np.zeros(space.shape), | ||
maximum=space.nvec, | ||
name=name, | ||
) | ||
|
||
elif isinstance(space, spaces.Tuple): | ||
return tuple(space2spec(s, name) for s in space.spaces) | ||
|
||
elif isinstance(space, spaces.Dict): | ||
return { | ||
key: space2spec(value, name) for key, value in space.spaces.items() | ||
} | ||
|
||
else: | ||
raise ValueError("Unexpected gym space: {}".format(space)) | ||
|
||
|
||
class DMEnvFromGym(dm_env.Environment): | ||
"""A wrapper to convert an OpenAI Gym environment to a dm_env.Environment.""" | ||
|
||
def __init__(self, gym_env: gym.Env): | ||
self.gym_env = gym_env | ||
# Convert gym action and observation spaces to dm_env specs. | ||
self._observation_spec = space2spec( | ||
self.gym_env.observation_space, name="observations" | ||
) | ||
self._action_spec = space2spec( | ||
self.gym_env.action_space, name="actions" | ||
) | ||
self._reset_next_step = True | ||
|
||
def reset(self) -> dm_env.TimeStep: | ||
self._reset_next_step = False | ||
observation = self.gym_env.reset() | ||
return dm_env.restart(observation) | ||
|
||
def step(self, action: int) -> dm_env.TimeStep: | ||
if self._reset_next_step: | ||
return self.reset() | ||
|
||
# Convert the gym step result to a dm_env TimeStep. | ||
observation, reward, done, info = self.gym_env.step(action) | ||
self._reset_next_step = done | ||
|
||
if done: | ||
is_truncated = info.get("TimeLimit.truncated", False) | ||
if is_truncated: | ||
return dm_env.truncation(reward, observation) | ||
else: | ||
return dm_env.termination(reward, observation) | ||
else: | ||
return dm_env.transition(reward, observation) | ||
|
||
def close(self): | ||
self.gym_env.close() | ||
|
||
def observation_spec(self): | ||
return self._observation_spec | ||
|
||
def action_spec(self): | ||
return self._action_spec |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -16,5 +16,4 @@ optax | |
pytest | ||
wandb | ||
pytest-cov | ||
bsuite | ||
tqdm |