Residual Feature Distillation Network for Lightweight Image Super-Resolution
- Clone the repository
- Tensorflow 2.2.0+
- Python 3.6+
- Keras 2.3.0
- PIL
- numpy
pip install -r requirements.txt
-
Train RFDNet
python main.py
-
Test RFDNet
python test.py
usage: test.py [-h] [--test_path TEST_PATH] [--gpu GPU]
[--weight_test_path WEIGHT_TEST_PATH] [--filter FILTER]
[--feat FEAT] [--scale SCALE]
optional arguments:
-h, --help show this help message and exit
--test_path TEST_PATH
--gpu GPU
--weight_test_path WEIGHT_TEST_PATH
--filter FILTER
--feat FEAT
--scale SCALE
Input - Low Res | Bilinear | Output High Res |
---|---|---|
This project is licensed under the MIT License - see the LICENSE file for details
[1] Training and Testing dataset - link
@misc{liu2020residual,
title={Residual Feature Distillation Network for Lightweight Image Super-Resolution},
author={Jie Liu and Jie Tang and Gangshan Wu},
year={2020},
eprint={2009.11551},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
- Any ideas on updating or misunderstanding, please send me an email: [email protected]
- If you find this repo helpful, kindly give me a star.