Skip to content

Commit

Permalink
Implementing reviewer changes.
Browse files Browse the repository at this point in the history
  • Loading branch information
tscrim committed Jun 4, 2024
1 parent 58cb435 commit 62f0db5
Show file tree
Hide file tree
Showing 2 changed files with 20 additions and 20 deletions.
8 changes: 4 additions & 4 deletions src/sage/algebras/hecke_algebras/ariki_koike_algebra.py
Original file line number Diff line number Diff line change
Expand Up @@ -625,10 +625,10 @@ def _T_on_basis(self, i, m):
tres, ct = self._res(t, i)
sres, cs = self._res(t, i+1)

if ct[0] == cs[0] and ct[2] == cs[2]: # same column
if ct[0] == cs[0] and ct[2] == cs[2]: # same column
return self.element_class(self, {(la, v, t): -R.one()})

if ct[0] == cs[0] and ct[1] == cs[1]: # same row
if ct[0] == cs[0] and ct[1] == cs[1]: # same row
return self.element_class(self, {(la, v, t): self._q})

# result is standard
Expand Down Expand Up @@ -1120,7 +1120,7 @@ def a_realization(self):

def specht_module(self, la):
r"""
Return the Specht module of ``self`` corresponded to shape ``la``.
Return the Specht module of ``self`` corresponding to the shape ``la``.
EXAMPLES::
Expand Down Expand Up @@ -2355,7 +2355,7 @@ def _basis_to_word(self, t):
for i, k in enumerate(t[0]):
if not k:
continue
redword.extend(list(reversed(range(1, i+1))) + [0] * k)
redword.extend(list(range(i, 0, -1))) + [0]*k)
redword.extend(t[1].reduced_word())
return redword

Expand Down
32 changes: 16 additions & 16 deletions src/sage/algebras/hecke_algebras/ariki_koike_specht_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ class SpechtModule(CombinatorialFreeModule):
The action of `L_i` is given by `t \cdot L_i = r_T(i) t`. For `T_i`,
we need to consider the following cases. If `i, i+1` are in the same
row (resp. column), then `t \cdot T_i = q t` (resp. `t \cdot T_i = - t`).
row (resp. column), then `t \cdot T_i = q t` (resp. `t \cdot T_i = -t`).
Otherwise if we swap `i, i+1`, the resulting tableau tuple `s` is again
standard and the action is given by
Expand All @@ -61,7 +61,7 @@ class SpechtModule(CombinatorialFreeModule):
Over a field of characteristic `0`, the set of Specht modules for all
partition tuples of level `r` and size `n` form the complete set
of irreducible modules for `H_{r,n}(q, u)` [AK1994]_. (The condition
on the base ring can be weakened; see Theorem 3.2 of [Mathas2002]_.)
on the base ring can be weakened; see Theorem 3.2 of [Mathas2002]_.)
EXAMPLES:
Expand Down Expand Up @@ -217,12 +217,12 @@ def _latex_(self):

def _test_representation(self, **options):
r"""
Test that the relations of the Ariki-Koike algebra are statisfied.
Test that the relations of the Ariki-Koike algebra are satisfied.
EXAMPLES::
sage: q = ZZ['q'].fraction_field().gen()
sage: AK = algebras.ArikiKoike(2, 4, q, [q^2+1,q-3], q.parent())
sage: AK = algebras.ArikiKoike(2, 4, q, [q^2+1, q-3], q.parent())
sage: S = AK.specht_module([[2,1], [1]])
sage: S._test_representation(elements=S.basis())
"""
Expand Down Expand Up @@ -283,9 +283,9 @@ def _L_on_basis(self, i, t):
(u2*q^-2)*S[([[2, 4], [8]], [], [[1, 3, 7], [5, 6], [9, 10]])]
"""
c = t.cells_containing(i)[0]
if len(c) == 2: # it is of level 1 and a regular tableau
if len(c) == 2: # it is of level 1 and a regular tableau
c = (0,) + c
res = self._q**(c[2] - c[1]) * self._u[c[0]]
res = self._q**(c[2]-c[1]) * self._u[c[0]]
R = self.base_ring()
return self.element_class(self, {t: R(res)})

Expand Down Expand Up @@ -322,22 +322,22 @@ def _T_on_basis(self, i, t):

ct = t.cells_containing(i)[0]
cs = t.cells_containing(i+1)[0]
if len(ct) == 2: # it is of level 1 and a regular tableau
if len(ct) == 2: # it is of level 1 and a regular tableau
ct = (0,) + ct
cs = (0,) + cs

if ct[0] == cs[0] and ct[2] == cs[2]: # same column
if ct[0] == cs[0] and ct[2] == cs[2]: # same column
return self.element_class(self, {t: -R.one()})

if ct[0] == cs[0] and ct[1] == cs[1]: # same row
if ct[0] == cs[0] and ct[1] == cs[1]: # same row
return self.element_class(self, {t: self._q})

# result is standard
s = t.symmetric_group_action_on_entries(self._Pn.simple_reflection(i))
assert s.parent() is t.parent()

def res(cell):
return self._q**(cell[2] - cell[1]) * self._u[cell[0]]
return self._q**(cell[2]-cell[1]) * self._u[cell[0]]

# Note that the residue of i in t is given by the cell c
# and of i in s corresponds to cell cp because the
Expand All @@ -350,7 +350,7 @@ def res(cell):

def ariki_koike_algebra(self):
r"""
Return the Ariki-Koike algebra that ``self`` is a reprensetation of.
Return the Ariki-Koike algebra that ``self`` is a representation of.
EXAMPLES::
Expand Down Expand Up @@ -394,15 +394,15 @@ def _acted_upon_(self, scalar, self_on_left):
sage: AK = algebras.ArikiKoike(2, 4, use_fraction_field=True)
sage: LT = AK.LT()
sage: T = AK.T()
sage: S = AK.specht_module([[1],[2,1]])
sage: S = AK.specht_module([[1], [2,1]])
sage: B = list(LT.basis())[::55]
sage: all(b * x == b * T(x) for b in S.basis() for x in B) # long time
True
"""
ret = super()._acted_upon_(scalar, self_on_left)
if ret is not None:
return ret
if not self_on_left: # only a right action
if not self_on_left: # only a right action
return None
P = self.parent()
if scalar not in P._AK:
Expand Down Expand Up @@ -450,7 +450,7 @@ def L(self, i):
True
sage: TableauTuples.options._reset() # reset
"""
if not self: # action on 0 is 0
if not self: # action on 0 is 0
return self
if i not in ZZ:
ret = self
Expand Down Expand Up @@ -487,15 +487,15 @@ def T(self, i):
True
sage: b.T(9)
q*S[2,4/8|-|1,5,7/3,6/9,10]
sage: all(b.T([i,i]) == (q-1) * b.T(i) + q*b for i in range(1,10))
sage: all(b.T([i,i]) == (q-1)*b.T(i) + q*b for i in range(1,10))
True
sage: b.T(0)
u2*S[2,4/8|-|1,5,7/3,6/9,10]
sage: b.T([0,1,0,1]) == b.T([1,0,1,0])
True
sage: TableauTuples.options._reset() # reset
"""
if not self: # action on 0 is 0
if not self: # action on 0 is 0
return self
if i not in ZZ:
ret = self
Expand Down

0 comments on commit 62f0db5

Please sign in to comment.