NLP text summarization, analysis, and classification pipelines built using TensorFlow and Transformers with a Flask api
Table of Contents
Python >= 3.5
- Clone the repo
git clone https://github.com/tslr/ml cd ml
- Install Virtualenv
pip install virtualenv
- Create virtualenv
or
virtualenv venv --python=3.8
python3 -m virtualenv venv --python=3.8
- Activate Virtualenv
source ./venv/bin/activate
- Install all dependencies
pip install -r requirements.txt
-> Run the flask app
cd app
python app.py
-> Run as a docker container
./start.sh
The api runs at localhost:5000/.
- Fork the Project
- Create your Feature Branch (
git checkout -b feature/{feature}
) - Commit your Changes (
git commit -m 'Add some feature'
) - Push to the Branch (
git push origin feature/feature
) - Open a Pull Request
Zayaan Moez - @zayaanmoez | Malcolm Yeh - @malcolmyeh
Project Link: https://github.com/tlsrio/ml