forked from autowarefoundation/autoware.universe
-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f874652
commit f37150c
Showing
7 changed files
with
582 additions
and
72 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
185 changes: 185 additions & 0 deletions
185
...ning_debug_tools/scripts/perception_replayer/old_reproducer/perception_replayer_common.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright 2023 TIER IV, Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
from subprocess import CalledProcessError | ||
from subprocess import check_output | ||
import time | ||
|
||
from autoware_auto_perception_msgs.msg import DetectedObjects | ||
from autoware_auto_perception_msgs.msg import PredictedObjects | ||
from autoware_auto_perception_msgs.msg import TrackedObjects | ||
from autoware_auto_perception_msgs.msg import TrafficSignalArray as AutoTrafficSignalArray | ||
from autoware_perception_msgs.msg import TrafficSignalArray | ||
from geometry_msgs.msg import PoseWithCovarianceStamped | ||
from nav_msgs.msg import Odometry | ||
import psutil | ||
from rclpy.node import Node | ||
from rclpy.serialization import deserialize_message | ||
from rosbag2_py import StorageFilter | ||
from rosidl_runtime_py.utilities import get_message | ||
from sensor_msgs.msg import PointCloud2 | ||
from utils import open_reader | ||
|
||
|
||
class PerceptionReplayerCommon(Node): | ||
def __init__(self, args, name): | ||
super().__init__(name) | ||
self.args = args | ||
|
||
self.ego_pose = None | ||
self.rosbag_objects_data = [] | ||
self.rosbag_ego_odom_data = [] | ||
self.rosbag_traffic_signals_data = [] | ||
self.is_auto_traffic_signals = False | ||
|
||
# subscriber | ||
self.sub_odom = self.create_subscription( | ||
Odometry, "/localization/kinematic_state", self.on_odom, 1 | ||
) | ||
|
||
# publisher | ||
if self.args.detected_object: | ||
self.objects_pub = self.create_publisher( | ||
DetectedObjects, "/perception/object_recognition/detection/objects", 1 | ||
) | ||
elif self.args.tracked_object: | ||
self.objects_pub = self.create_publisher( | ||
TrackedObjects, "/perception/object_recognition/tracking/objects", 1 | ||
) | ||
else: | ||
self.objects_pub = self.create_publisher( | ||
PredictedObjects, "/perception/object_recognition/objects", 1 | ||
) | ||
|
||
self.pointcloud_pub = self.create_publisher( | ||
PointCloud2, "/perception/obstacle_segmentation/pointcloud", 1 | ||
) | ||
self.recorded_ego_pub_as_initialpose = self.create_publisher( | ||
PoseWithCovarianceStamped, "/initialpose", 1 | ||
) | ||
|
||
self.recorded_ego_pub = self.create_publisher( | ||
Odometry, "/perception_reproducer/rosbag_ego_odom", 1 | ||
) | ||
|
||
# load rosbag | ||
print("Stared loading rosbag") | ||
if os.path.isdir(args.bag): | ||
for bag_file in sorted(os.listdir(args.bag)): | ||
if bag_file.endswith(self.args.rosbag_format): | ||
self.load_rosbag(args.bag + "/" + bag_file) | ||
else: | ||
self.load_rosbag(args.bag) | ||
print("Ended loading rosbag") | ||
|
||
# temporary support old auto msgs | ||
if self.is_auto_traffic_signals: | ||
self.auto_traffic_signals_pub = self.create_publisher( | ||
AutoTrafficSignalArray, "/perception/traffic_light_recognition/traffic_signals", 1 | ||
) | ||
else: | ||
self.traffic_signals_pub = self.create_publisher( | ||
TrafficSignalArray, "/perception/traffic_light_recognition/traffic_signals", 1 | ||
) | ||
|
||
# wait for ready to publish/subscribe | ||
time.sleep(1.0) | ||
|
||
def on_odom(self, odom): | ||
self.ego_pose = odom.pose.pose | ||
|
||
def load_rosbag(self, rosbag2_path: str): | ||
reader = open_reader(str(rosbag2_path)) | ||
|
||
topic_types = reader.get_all_topics_and_types() | ||
# Create a map for quicker lookup | ||
type_map = {topic_types[i].name: topic_types[i].type for i in range(len(topic_types))} | ||
|
||
objects_topic = ( | ||
"/perception/object_recognition/detection/objects" | ||
if self.args.detected_object | ||
else "/perception/object_recognition/tracking/objects" | ||
if self.args.tracked_object | ||
else "/perception/object_recognition/objects" | ||
) | ||
ego_odom_topic = "/localization/kinematic_state" | ||
traffic_signals_topic = "/perception/traffic_light_recognition/traffic_signals" | ||
topic_filter = StorageFilter(topics=[objects_topic, ego_odom_topic, traffic_signals_topic]) | ||
reader.set_filter(topic_filter) | ||
|
||
while reader.has_next(): | ||
(topic, data, stamp) = reader.read_next() | ||
msg_type = get_message(type_map[topic]) | ||
msg = deserialize_message(data, msg_type) | ||
# import pdb; pdb.set_trace() | ||
print(type(msg)) | ||
if topic == objects_topic: | ||
self.rosbag_objects_data.append((stamp, msg)) | ||
if topic == ego_odom_topic: | ||
self.rosbag_ego_odom_data.append((stamp, msg)) | ||
if topic == traffic_signals_topic: | ||
self.rosbag_traffic_signals_data.append((stamp, msg)) | ||
self.is_auto_traffic_signals = ( | ||
"autoware_auto_perception_msgs" in type(msg).__module__ | ||
) | ||
|
||
def kill_online_perception_node(self): | ||
# kill node if required | ||
kill_process_name = None | ||
if self.args.detected_object: | ||
kill_process_name = "dummy_perception_publisher_node" | ||
elif self.args.tracked_object: | ||
kill_process_name = "multi_object_tracker" | ||
else: | ||
kill_process_name = "map_based_prediction" | ||
if kill_process_name: | ||
try: | ||
pid = check_output(["pidof", kill_process_name]) | ||
process = psutil.Process(int(pid[:-1])) | ||
process.terminate() | ||
except CalledProcessError: | ||
pass | ||
|
||
def binary_search(self, data, timestamp): | ||
if data[-1][0] < timestamp: | ||
return data[-1][1] | ||
elif data[0][0] > timestamp: | ||
return data[0][1] | ||
|
||
low, high = 0, len(data) - 1 | ||
|
||
while low <= high: | ||
mid = (low + high) // 2 | ||
if data[mid][0] < timestamp: | ||
low = mid + 1 | ||
elif data[mid][0] > timestamp: | ||
high = mid - 1 | ||
else: | ||
return data[mid][1] | ||
|
||
# Return the next timestamp's data if available | ||
if low < len(data): | ||
return data[low][1] | ||
return None | ||
|
||
def find_topics_by_timestamp(self, timestamp): | ||
objects_data = self.binary_search(self.rosbag_objects_data, timestamp) | ||
traffic_signals_data = self.binary_search(self.rosbag_traffic_signals_data, timestamp) | ||
return objects_data, traffic_signals_data | ||
|
||
def find_ego_odom_by_timestamp(self, timestamp): | ||
return self.binary_search(self.rosbag_ego_odom_data, timestamp) |
152 changes: 152 additions & 0 deletions
152
planning/planning_debug_tools/scripts/perception_replayer/old_reproducer/utils.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright 2023 TIER IV, Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
import time | ||
|
||
from geometry_msgs.msg import Quaternion | ||
import numpy as np | ||
import rosbag2_py | ||
from sensor_msgs.msg import PointCloud2 | ||
from sensor_msgs.msg import PointField | ||
from tf_transformations import euler_from_quaternion | ||
from tf_transformations import quaternion_from_euler | ||
|
||
|
||
def get_rosbag_options(path, serialization_format="cdr"): | ||
storage_options = rosbag2_py.StorageOptions(uri=path, storage_id="sqlite3") | ||
|
||
converter_options = rosbag2_py.ConverterOptions( | ||
input_serialization_format=serialization_format, | ||
output_serialization_format=serialization_format, | ||
) | ||
|
||
return storage_options, converter_options | ||
|
||
|
||
def open_reader(path: str): | ||
storage_options, converter_options = get_rosbag_options(path) | ||
reader = rosbag2_py.SequentialReader() | ||
reader.open(storage_options, converter_options) | ||
return reader | ||
|
||
|
||
def calc_squared_distance(p1, p2): | ||
return math.sqrt((p1.x - p2.x) ** 2 + (p1.y - p2.y) ** 2) | ||
|
||
|
||
def create_empty_pointcloud(timestamp): | ||
pointcloud_msg = PointCloud2() | ||
pointcloud_msg.header.stamp = timestamp | ||
pointcloud_msg.header.frame_id = "map" | ||
pointcloud_msg.height = 1 | ||
pointcloud_msg.is_dense = True | ||
pointcloud_msg.point_step = 16 | ||
field_name_vec = ["x", "y", "z"] | ||
offset_vec = [0, 4, 8] | ||
for field_name, offset in zip(field_name_vec, offset_vec): | ||
field = PointField() | ||
field.name = field_name | ||
field.offset = offset | ||
field.datatype = 7 | ||
field.count = 1 | ||
pointcloud_msg.fields.append(field) | ||
return pointcloud_msg | ||
|
||
|
||
def get_yaw_from_quaternion(orientation): | ||
orientation_list = [ | ||
orientation.x, | ||
orientation.y, | ||
orientation.z, | ||
orientation.w, | ||
] | ||
return euler_from_quaternion(orientation_list)[2] | ||
|
||
|
||
def get_quaternion_from_yaw(yaw): | ||
q = quaternion_from_euler(0, 0, yaw) | ||
orientation = Quaternion() | ||
orientation.x = q[0] | ||
orientation.y = q[1] | ||
orientation.z = q[2] | ||
orientation.w = q[3] | ||
return orientation | ||
|
||
|
||
def translate_objects_coordinate(ego_pose, log_ego_pose, objects_msg): | ||
log_ego_yaw = get_yaw_from_quaternion(log_ego_pose.orientation) | ||
log_ego_pose_trans_mat = np.array( | ||
[ | ||
[ | ||
math.cos(log_ego_yaw), | ||
-math.sin(log_ego_yaw), | ||
log_ego_pose.position.x, | ||
], | ||
[math.sin(log_ego_yaw), math.cos(log_ego_yaw), log_ego_pose.position.y], | ||
[0.0, 0.0, 1.0], | ||
] | ||
) | ||
|
||
ego_yaw = get_yaw_from_quaternion(ego_pose.orientation) | ||
ego_pose_trans_mat = np.array( | ||
[ | ||
[math.cos(ego_yaw), -math.sin(ego_yaw), ego_pose.position.x], | ||
[math.sin(ego_yaw), math.cos(ego_yaw), ego_pose.position.y], | ||
[0.0, 0.0, 1.0], | ||
] | ||
) | ||
|
||
for o in objects_msg.objects: | ||
log_object_pose = o.kinematics.pose_with_covariance.pose | ||
log_object_yaw = get_yaw_from_quaternion(log_object_pose.orientation) | ||
log_object_pos_vec = np.array([log_object_pose.position.x, log_object_pose.position.y, 1.0]) | ||
|
||
# translate object pose from ego pose in log to ego pose in simulation | ||
object_pos_vec = np.linalg.inv(ego_pose_trans_mat).dot( | ||
log_ego_pose_trans_mat.dot(log_object_pos_vec.T) | ||
) | ||
|
||
object_pose = o.kinematics.pose_with_covariance.pose | ||
object_pose.position.x = object_pos_vec[0] | ||
object_pose.position.y = object_pos_vec[1] | ||
object_pose.orientation = get_quaternion_from_yaw(log_object_yaw + log_ego_yaw - ego_yaw) | ||
|
||
|
||
class StopWatch: | ||
def __init__(self, verbose): | ||
# A dictionary to store the starting times | ||
self.start_times = {} | ||
self.verbose = verbose | ||
|
||
def tic(self, name): | ||
"""Store the current time with the given name.""" | ||
self.start_times[name] = time.perf_counter() | ||
|
||
def toc(self, name): | ||
"""Print the elapsed time since the last call to tic() with the same name.""" | ||
if name not in self.start_times: | ||
print(f"No start time found for {name}!") | ||
return | ||
|
||
elapsed_time = ( | ||
time.perf_counter() - self.start_times[name] | ||
) * 1000 # Convert to milliseconds | ||
if self.verbose: | ||
print(f"Time for {name}: {elapsed_time: .2f} ms") | ||
|
||
# Reset the starting time for the name | ||
del self.start_times[name] |
Oops, something went wrong.