Skip to content

Predicting and Visualizing the Seasonal Availability of Thermal Habitat in Lakes

License

Notifications You must be signed in to change notification settings

stevencarlislewalker/thermopic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Predicting and Visualizing Thermal Habitat: thermopic

The thermopic R package provides functionality for predicting and visualizing the seasonal availability of thermal habitat in lakes.

Installation

Installation is easiest from an R commandline using the devtools package.

devtools::install_github('stevencarlislewalker/thermopic')

It might be necessary to preceed this first step by installing devtools.

install.packages('devtools')

Once the package is installed, it may be loaded using the library function.

library(thermopic)

Quick tour

The thermopic package runs within a project directory, which we create using the optional temporary_thermopic_directory function.

root = temporary_thermopic_directory()

We now use thermopic's setup_directory function to create the required directory structure for our project. For this quick tour we use sample input data contained within the package, which is the default behaviour of setup_directory.

setup_directory(root, overwrite = TRUE)

To inspect the resulting directory structure one may use thermopics print_directory_tree function.

print_directory_tree(root)
## thermopic_project           
##  ¦--DataIn                  
##  ¦   ¦--0_User_Options.csv  
##  ¦   ¦--1_Lake.csv          
##  ¦   °--2_Climate.csv       
##  ¦--DataOut                 
##  ¦   °--ThermoPics          
##  ¦--ThermoPic_Dictionary.csv
##  ¦--ThermoPic_Guide.pdf     
##  °--ThermoPic_TechReport.pdf

Now that the structure is in place one may fit the thermopic model.

fitted_thermopic_model = thermopic_model(
  path = root,
  Lake = '1_Lake.csv',
  Climate = '2_Climate.csv'
)

And create the report as well as the thermopic images themselves.

thermopic_report_data = thermopic_report(
  path = root,
  STM_Parameters = '4_STM_Parameters.csv',
  Nlakes_test = 5,
  show_progress_bar = FALSE
)

Here we see the resulting outputs including the images in jpeg format files.

## thermopic_project                                          
##  ¦--DataIn                                                 
##  ¦   ¦--0_User_Options.csv                                 
##  ¦   ¦--1_Lake.csv                                         
##  ¦   °--2_Climate.csv                                      
##  ¦--DataOut                                                
##  ¦   ¦--3_Model_Inputs.csv                                 
##  ¦   ¦--4_STM_Parameters.csv                               
##  ¦   ¦--5_ThermalSpace4D.csv                               
##  ¦   ¦--ThermoPics                                         
##  ¦   ¦   ¦--4_Wingiskus Lake_15-3543-56122_P2001-2010.jpeg 
##  ¦   ¦   ¦--5_Cygnet Lake_15-3653-55394_P2001-2010.jpeg    
##  ¦   ¦   ¦--5_Malachi Lake_15-3559-55281_P2001-2010.jpeg   
##  ¦   ¦   ¦--5_South Scot Lake_15-3523-55336_P2001-2010.jpeg
##  ¦   ¦   °--5_Whitefish Lake_15-3532-55170_P2001-2010.jpeg 
##  ¦   ¦--tmp_ClimMetrics.csv                                
##  ¦   °--tmp_IceClimMetrics.csv                             
##  ¦--ThermoPic_Dictionary.csv                               
##  ¦--ThermoPic_Guide.pdf                                    
##  °--ThermoPic_TechReport.pdf

Further information

For a more detailed introduction see this tutorial.

About

Predicting and Visualizing the Seasonal Availability of Thermal Habitat in Lakes

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages