-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a54bc48
commit d2b0568
Showing
15 changed files
with
2,847 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# This workflow will build and push a new container image to Amazon ECR, | ||
# and then will deploy a new task definition to Amazon ECS, on every push | ||
# to the master branch. | ||
# | ||
# To use this workflow, you will need to complete the following set-up steps: | ||
# | ||
# 1. Create an ECR repository to store your images. | ||
# For example: `aws ecr create-repository --repository-name my-ecr-repo --region us-east-2`. | ||
# Replace the value of `ECR_REPOSITORY` in the workflow below with your repository's name. | ||
# Replace the value of `aws-region` in the workflow below with your repository's region. | ||
# | ||
# 2. Create an ECS task definition, an ECS cluster, and an ECS service. | ||
# For example, follow the Getting Started guide on the ECS console: | ||
# https://us-east-2.console.aws.amazon.com/ecs/home?region=us-east-2#/firstRun | ||
# Replace the values for `service` and `cluster` in the workflow below with your service and cluster names. | ||
# | ||
# 3. Store your ECS task definition as a JSON file in your repository. | ||
# The format should follow the output of `aws ecs register-task-definition --generate-cli-skeleton`. | ||
# Replace the value of `task-definition` in the workflow below with your JSON file's name. | ||
# Replace the value of `container-name` in the workflow below with the name of the container | ||
# in the `containerDefinitions` section of the task definition. | ||
# | ||
# 4. Store an IAM user access key in GitHub Actions secrets named `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY`. | ||
# See the documentation for each action used below for the recommended IAM policies for this IAM user, | ||
# and best practices on handling the access key credentials. | ||
|
||
on: | ||
push: | ||
branches: | ||
- main | ||
paths: | ||
- 'squat_analysis/**' | ||
workflow_dispatch: | ||
|
||
name: PROD Analysis "squat analysis" build & deployment | ||
|
||
jobs: | ||
deploy: | ||
name: Deploy | ||
runs-on: ubuntu-latest | ||
|
||
steps: | ||
- name: Checkout | ||
uses: actions/checkout@v1 | ||
|
||
- name: Configure AWS credentials | ||
uses: aws-actions/configure-aws-credentials@v1 | ||
with: | ||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }} | ||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }} | ||
aws-region: us-west-2 | ||
|
||
- name: Login to Amazon ECR | ||
id: login-ecr | ||
uses: aws-actions/amazon-ecr-login@v1 | ||
|
||
- name: Build, tag, and push image to Amazon ECR | ||
id: build-image | ||
env: | ||
IMAGE_TAG: latest # ${{ github.sha }} | ||
run: | | ||
# Build a docker container and | ||
# push it to ECR so that it can | ||
# be deployed to ECS. | ||
cd squat_analysis | ||
docker build -f Dockerfile -t 660440363484.dkr.ecr.us-west-2.amazonaws.com/opencap-analysis/squat_analysis:$IMAGE_TAG . | ||
docker push 660440363484.dkr.ecr.us-west-2.amazonaws.com/opencap-analysis/squat_analysis:$IMAGE_TAG | ||
echo "::set-output name=image::660440363484.dkr.ecr.us-west-2.amazonaws.com/opencap-analysis/squat_analysis:$IMAGE_TAG" | ||
- name: Force deployment | ||
env: | ||
IMAGE_TAG: latest # ${{ github.sha }} | ||
run: | | ||
aws lambda update-function-code --function-name squat-analysis --image-uri 660440363484.dkr.ecr.us-west-2.amazonaws.com/opencap-analysis/squat_analysis:$IMAGE_TAG | jq 'if .Environment.Variables.API_TOKEN? then .Environment.Variables.API_TOKEN = "REDACTED" else . end' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
.git | ||
Data/ | ||
.env | ||
docker |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
__pycache__ | ||
.env | ||
*.log | ||
*.ipynb_checkpoints | ||
Data/* | ||
|
||
*DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
FROM stanfordnmbl/opensim-python:4.3 | ||
|
||
ARG FUNCTION_DIR="/function" | ||
|
||
RUN apt-get update && \ | ||
apt-get install -y \ | ||
build-essential \ | ||
python3-dev \ | ||
g++ \ | ||
make \ | ||
cmake \ | ||
unzip \ | ||
libcurl4-openssl-dev | ||
|
||
# Copy function code | ||
RUN mkdir -p ${FUNCTION_DIR} | ||
COPY ./requirements.txt /requirements.txt | ||
# Install the requirements.txt | ||
RUN python3.8 -m pip install --no-cache-dir -r /requirements.txt | ||
RUN python3.8 -m pip install --target ${FUNCTION_DIR} awslambdaric | ||
|
||
ADD https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie /usr/bin/aws-lambda-rie | ||
RUN chmod +x /usr/bin/aws-lambda-rie | ||
|
||
COPY ./function ${FUNCTION_DIR} | ||
RUN chmod +x ${FUNCTION_DIR}/entrypoint | ||
WORKDIR ${FUNCTION_DIR} | ||
|
||
ENTRYPOINT ["./entrypoint"] | ||
CMD ["handler.handler"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
version: '3.8' | ||
|
||
services: | ||
gait_analysis: | ||
# platform: linux/amd64 | ||
build: | ||
context: . | ||
dockerfile: ./Dockerfile | ||
ports: | ||
- 9005:8080 | ||
env_file: | ||
- ./.env |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
#!/bin/bash | ||
if [ -z "${AWS_LAMBDA_RUNTIME_API}" ]; then | ||
exec /usr/bin/aws-lambda-rie /usr/bin/python3.8 -m awslambdaric $@ | ||
else | ||
exec /usr/bin/python3.8 -m awslambdaric $@ | ||
fi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
''' | ||
--------------------------------------------------------------------------- | ||
OpenCap processing: example.py | ||
--------------------------------------------------------------------------- | ||
Copyright 2022 Stanford University and the Authors | ||
Author(s): Antoine Falisse, Scott Uhlrich | ||
Licensed under the Apache License, Version 2.0 (the "License"); you may not | ||
use this file except in compliance with the License. You may obtain a copy | ||
of the License at http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
''' | ||
import json | ||
import os | ||
import numpy as np | ||
|
||
from squat_analysis import squat_analysis | ||
from utils import get_trial_id, download_trial, import_metadata | ||
|
||
|
||
def handler(event, context): | ||
""" AWS Lambda function handler. This function performs a gait analysis. | ||
To invoke the function do POST request on the following url | ||
http://localhost:8080/2015-03-31/functions/function/invocations | ||
""" | ||
# temporary placeholder | ||
kwargs = json.loads(event['body']) | ||
|
||
for field in ('session_id', 'specific_trial_names'): | ||
if field not in kwargs: | ||
return { | ||
'statusCode': 400, | ||
'headers': {'Content-Type': 'application/json'}, | ||
'body': {'error': f'{field} field is required.'} | ||
} | ||
|
||
# %% User inputs. | ||
# Specify session id; see end of url in app.opencap.ai/session/<session_id>. | ||
# session_id = "8e430ad2-989c-4354-a6f1-7eb21fa0a16e" | ||
session_id = kwargs['session_id'] | ||
|
||
# Specify trial names in a list; use None to process all trials in a session. | ||
# specific_trial_names = ['walk'] | ||
specific_trial_names = kwargs['specific_trial_names'] | ||
|
||
# Specify where to download the data. | ||
sessionDir = os.path.join("/tmp/Data", session_id) | ||
|
||
# %% Download data. | ||
trial_id = get_trial_id(session_id,specific_trial_names[0]) | ||
trial_name = download_trial(trial_id,sessionDir,session_id=session_id) | ||
|
||
# Select how many repetitions you'd like to analyze. Select -1 for all | ||
# repetitions detected in the trial. | ||
n_repetitions = -1 | ||
|
||
# Select lowpass filter frequency for kinematics data. | ||
filter_frequency = 4 | ||
|
||
# %% Process data. | ||
# Init squat analysis. | ||
squat = squat_analysis( | ||
sessionDir, trial_name, | ||
lowpass_cutoff_frequency_for_coordinate_values=filter_frequency, | ||
n_repetitions=n_repetitions) | ||
squat_events = squat.get_squat_events() | ||
|
||
max_knee_flexion_angle_r_mean, max_knee_flexion_angle_r_std, _ = squat.compute_peak_angle('knee_angle_r') | ||
max_knee_flexion_angle_l_mean, max_knee_flexion_angle_l_std, _ = squat.compute_peak_angle('knee_angle_l') | ||
max_knee_flexion_angle_mean_mean = np.round(np.mean(np.array([max_knee_flexion_angle_r_mean, max_knee_flexion_angle_l_mean]))) | ||
max_knee_flexion_angle_mean_std = np.round(np.mean(np.array([max_knee_flexion_angle_r_std, max_knee_flexion_angle_l_std]))) | ||
|
||
max_hip_flexion_angle_r_mean, max_hip_flexion_angle_r_std, _ = squat.compute_peak_angle('hip_flexion_r') | ||
max_hip_flexion_angle_l_mean, max_hip_flexion_angle_l_std, _ = squat.compute_peak_angle('hip_flexion_l') | ||
max_hip_flexion_angle_mean_mean = np.round(np.mean(np.array([max_hip_flexion_angle_r_mean, max_hip_flexion_angle_l_mean]))) | ||
max_hip_flexion_angle_mean_std = np.round(np.mean(np.array([max_hip_flexion_angle_r_std, max_hip_flexion_angle_l_std]))) | ||
|
||
max_hip_adduction_angle_r_mean, max_hip_adduction_angle_r_std, _ = squat.compute_peak_angle('hip_adduction_r') | ||
max_hip_adduction_angle_l_mean, max_hip_adduction_angle_l_std, _ = squat.compute_peak_angle('hip_adduction_l') | ||
max_hip_adduction_angle_mean_mean = np.round(np.mean(np.array([max_hip_adduction_angle_r_mean, max_hip_adduction_angle_l_mean]))) | ||
max_hip_adduction_angle_mean_std = np.round(np.mean(np.array([max_hip_adduction_angle_r_std, max_hip_adduction_angle_l_std]))) | ||
|
||
rom_knee_flexion_angle_r_mean, rom_knee_flexion_angle_r_std, _ = squat.compute_range_of_motion('knee_angle_r') | ||
rom_knee_flexion_angle_l_mean, rom_knee_flexion_angle_l_std, _ = squat.compute_range_of_motion('knee_angle_l') | ||
rom_knee_flexion_angle_mean_mean = np.round(np.mean(np.array([rom_knee_flexion_angle_r_mean, rom_knee_flexion_angle_l_mean]))) | ||
rom_knee_flexion_angle_mean_std = np.round(np.mean(np.array([rom_knee_flexion_angle_r_std, rom_knee_flexion_angle_l_std]))) | ||
|
||
squat_scalars = {} | ||
squat_scalars['peak_knee_flexion_angle_mean'] = {'value': max_knee_flexion_angle_mean_mean} | ||
squat_scalars['peak_knee_flexion_angle_mean'] = {'label': 'Mean peak knee flexion angle (deg)'} | ||
squat_scalars['peak_knee_flexion_angle_mean'] = {'colors':["red", "yellow", "green"]} | ||
peak_knee_flexion_angle_threshold = 100 | ||
squat_scalars['peak_knee_flexion_angle_mean'] = {'min_limit':float(np.round(0.90*peak_knee_flexion_angle_threshold))} | ||
squat_scalars['peak_knee_flexion_angle_mean'] = {'max_limit':float(peak_knee_flexion_angle_threshold)} | ||
|
||
squat_scalars['peak_knee_flexion_angle_std'] = {'value': max_knee_flexion_angle_mean_std} | ||
squat_scalars['peak_knee_flexion_angle_std'] = {'label': 'Std peak knee flexion angle (deg)'} | ||
squat_scalars['peak_knee_flexion_angle_std'] = {'colors':["green", "yellow", "red"]} | ||
std_threshold_min = 2 | ||
std_threshold_max = 4 | ||
squat_scalars['peak_knee_flexion_angle_std'] = {'min_limit':float(std_threshold_min)} | ||
squat_scalars['peak_knee_flexion_angle_std'] = {'max_limit':float(std_threshold_max)} | ||
|
||
squat_scalars['peak_hip_flexion_angle_mean'] = {'value': max_hip_flexion_angle_mean_mean} | ||
squat_scalars['peak_hip_flexion_angle_mean'] = {'label': 'Mean peak hip flexion angle (deg)'} | ||
squat_scalars['peak_hip_flexion_angle_mean'] = {'colors':["red", "yellow", "green"]} | ||
peak_hip_flexion_angle_threshold = 100 | ||
squat_scalars['peak_hip_flexion_angle_mean'] = {'min_limit':float(np.round(0.90*peak_hip_flexion_angle_threshold))} | ||
squat_scalars['peak_hip_flexion_angle_mean'] = {'max_limit':float(peak_hip_flexion_angle_threshold)} | ||
|
||
squat_scalars['peak_hip_flexion_angle_std'] = {'value': max_hip_flexion_angle_mean_std} | ||
squat_scalars['peak_hip_flexion_angle_std'] = {'label': 'Std peak hip flexion angle (deg)'} | ||
squat_scalars['peak_hip_flexion_angle_std'] = {'colors':["green", "yellow", "red"]} | ||
squat_scalars['peak_hip_flexion_angle_std'] = {'min_limit':float(std_threshold_min)} | ||
squat_scalars['peak_hip_flexion_angle_std'] = {'max_limit':float(std_threshold_max)} | ||
|
||
squat_scalars['peak_knee_adduction_angle_mean'] = {'value': max_hip_adduction_angle_mean_mean} | ||
squat_scalars['peak_knee_adduction_angle_mean'] = {'label': 'Mean peak knee adduction angle (deg)'} | ||
squat_scalars['peak_knee_adduction_angle_mean'] = {'colors':["red", "green", "red"]} | ||
knee_adduction_angle_threshold = 5 | ||
squat_scalars['peak_knee_adduction_angle_mean'] = {'min_limit':float(-knee_adduction_angle_threshold)} | ||
squat_scalars['peak_knee_adduction_angle_mean'] = {'max_limit':float(knee_adduction_angle_threshold)} | ||
|
||
squat_scalars['peak_knee_adduction_angle_std'] = {'value': max_hip_adduction_angle_mean_std} | ||
squat_scalars['peak_knee_adduction_angle_std'] = {'label': 'Std peak knee adduction angle (deg)'} | ||
squat_scalars['peak_knee_adduction_angle_std'] = {'colors':["green", "yellow", "red"]} | ||
squat_scalars['peak_knee_adduction_angle_std'] = {'min_limit':float(std_threshold_min)} | ||
squat_scalars['peak_knee_adduction_angle_std'] = {'max_limit':float(std_threshold_max)} | ||
|
||
squat_scalars['rom_knee_flexion_angle_mean'] = {'value': rom_knee_flexion_angle_mean_mean} | ||
squat_scalars['rom_knee_flexion_angle_mean'] = {'label': 'Mean range of motion knee flexion angle (deg)'} | ||
squat_scalars['rom_knee_flexion_angle_mean'] = {'colors':["red", "yellow", "green"]} | ||
rom_knee_flexion_angle_threshold_min = 85 | ||
rom_knee_flexion_angle_threshold_max = 115 | ||
squat_scalars['rom_knee_flexion_angle_mean'] = {'min_limit':float(rom_knee_flexion_angle_threshold_min)} | ||
squat_scalars['rom_knee_flexion_angle_mean'] = {'max_limit':float(rom_knee_flexion_angle_threshold_max)} | ||
|
||
squat_scalars['rom_knee_flexion_angle_std'] = {'value': rom_knee_flexion_angle_mean_std} | ||
squat_scalars['rom_knee_flexion_angle_std'] = {'label': 'Std range of motion knee flexion angle (deg)'} | ||
squat_scalars['rom_knee_flexion_angle_std'] = {'colors':["green", "yellow", "red"]} | ||
squat_scalars['rom_knee_flexion_angle_std'] = {'min_limit':float(std_threshold_min)} | ||
squat_scalars['rom_knee_flexion_angle_std'] = {'max_limit':float(std_threshold_max)} | ||
|
||
# %% Return indices for visualizer and line curve plot. | ||
# %% Create json for deployement. | ||
# Indices / Times | ||
indices = {} | ||
indices['start'] = int(squat_events['eventIdxs'][0][0]) | ||
indices['end'] = int(squat_events['eventIdxs'][-1][-1]) | ||
times = {} | ||
times['start'] = float(squat_events['eventTimes'][0][0]) | ||
times['end'] = float(squat_events['eventTimes'][-1][-1]) | ||
|
||
# Datasets | ||
colNames = squat.coordinateValues.columns | ||
data = squat.coordinateValues.to_numpy() | ||
coordValues = data[indices['start']:indices['end']+1] | ||
datasets = [] | ||
for i in range(coordValues.shape[0]): | ||
datasets.append({}) | ||
for j in range(coordValues.shape[1]): | ||
# Exclude knee_angle_r_beta and knee_angle_l_beta | ||
if 'beta' in colNames[j] or 'mtp' in colNames[j]: | ||
continue | ||
datasets[i][colNames[j]] = coordValues[i,j] | ||
|
||
# Available options for line curve chart. | ||
y_axes = list(colNames) | ||
y_axes.remove('time') | ||
y_axes.remove('knee_angle_r_beta') | ||
y_axes.remove('knee_angle_l_beta') | ||
y_axes.remove('mtp_angle_r') | ||
y_axes.remove('mtp_angle_l') | ||
|
||
# Create results dictionnary. | ||
results = { | ||
'indices': times, | ||
'metrics': squat_scalars, | ||
'datasets': datasets, | ||
'x_axis': 'time', | ||
'y_axis': y_axes} | ||
|
||
return { | ||
'statusCode': 200, | ||
'headers': {'Content-Type': 'application/json'}, | ||
'body': results | ||
} |
Oops, something went wrong.