Skip to content

Commit

Permalink
Add xtensor fft implementation
Browse files Browse the repository at this point in the history
  • Loading branch information
spectre-ns committed Apr 24, 2024
1 parent 1d78377 commit 197b144
Show file tree
Hide file tree
Showing 3 changed files with 344 additions and 0 deletions.
17 changes: 17 additions & 0 deletions docs/source/xfft.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
.. Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht
Distributed under the terms of the BSD 3-Clause License.
The full license is in the file LICENSE, distributed with this software.
xfft
====

Defined in ``xtensor/xfft.hpp``

.. doxygenclass:: xt::fft_convolve
:project: xtensor
:members:

.. doxygentypedef:: xt::fft
:project: xtensor

.. doxygentypedef:: xt::ifft
:project: xtensor
241 changes: 241 additions & 0 deletions include/xtensor/xfft.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
#ifdef XTENSOR_USE_TBB
#include <oneapi/tbb.h>
#endif
#include <stdexcept>

#include <xtl/xcomplex.hpp>

#include <xtensor/xarray.hpp>
#include <xtensor/xaxis_slice_iterator.hpp>
#include <xtensor/xbuilder.hpp>
#include <xtensor/xcomplex.hpp>
#include <xtensor/xmath.hpp>
#include <xtensor/xnoalias.hpp>
#include <xtensor/xview.hpp>

namespace xt
{
namespace fft
{
namespace detail
{
template <
class E,
typename std::enable_if<xtl::is_complex<typename std::decay<E>::type::value_type>::value, bool>::type = true>
inline auto radix2(E&& e)
{
using namespace xt::placeholders;
using namespace std::complex_literals;
using value_type = typename std::decay_t<E>::value_type;
using precision = typename value_type::value_type;
auto N = e.size();
const bool powerOfTwo = !(N == 0) && !(N & (N - 1));
// check for power of 2
if (!powerOfTwo || N == 0)
{
// TODO: Replace implementation with dft
XTENSOR_THROW(std::runtime_error, "FFT Implementation requires power of 2");
}
auto pi = xt::numeric_constants<precision>::PI;
xt::xtensor<value_type, 1> ev = e;
if (N <= 1)
{
return ev;
}
else
{
#ifdef XTENSOR_USE_TBB
xt::xtensor<value_type, 1> even;
xt::xtensor<value_type, 1> odd;
oneapi::tbb::parallel_invoke(
[&]
{
even = radix2(xt::view(ev, xt::range(0, _, 2)));
},
[&]
{
odd = radix2(xt::view(ev, xt::range(1, _, 2)));
}
);
#else
auto even = radix2(xt::view(ev, xt::range(0, _, 2)));
auto odd = radix2(xt::view(ev, xt::range(1, _, 2)));
#endif

auto range = xt::arange<double>(N / 2);
auto exp = xt::exp(static_cast<value_type>(-2i) * pi * range / N);
auto t = exp * odd;
auto first_half = even + t;
auto second_half = even - t;
// TODO: should be a call to stack if performance was improved
auto spectrum = xt::xtensor<value_type, 1>::from_shape({N});
xt::view(spectrum, xt::range(0, N / 2)) = first_half;
xt::view(spectrum, xt::range(N / 2, N)) = second_half;
return spectrum;
}
}

template <typename E>
auto transform_bluestein(E&& data)
{
using value_type = typename std::decay_t<E>::value_type;
using precision = typename value_type::value_type;

// Find a power-of-2 convolution length m such that m >= n * 2 + 1
const std::size_t n = data.size();
size_t m = std::ceil(std::log2(n * 2 + 1));
m = std::pow(2, m);

// Trignometric table
auto exp_table = xt::xtensor<std::complex<precision>, 1>::from_shape({n});
xt::xtensor<std::size_t, 1> i = xt::pow(xt::linspace<std::size_t>(0, n - 1, n), 2);
i %= (n * 2);

auto angles = xt::eval(precision{3.141592653589793238463} * i / n);
auto j = std::complex<precision>(0, 1);
exp_table = xt::exp(-angles * j);

// Temporary vectors and preprocessing
auto av = xt::empty<std::complex<precision>>({m});
xt::view(av, xt::range(0, n)) = data * exp_table;


auto bv = xt::empty<std::complex<precision>>({m});
xt::view(bv, xt::range(0, n)) = ::xt::conj(exp_table);
xt::view(bv, xt::range(-n + 1, xt::placeholders::_)) = xt::view(
::xt::conj(xt::flip(exp_table)),
xt::range(xt::placeholders::_, -1)
);

// Convolution
auto xv = radix2(av);
auto yv = radix2(bv);
auto spectrum_k = xv * yv;
auto complex_args = xt::conj(spectrum_k);
auto fft_res = radix2(complex_args);
auto cv = xt::conj(fft_res) / m;

return xt::eval(xt::view(cv, xt::range(0, n)) * exp_table);
}
} // namespace detail

/**
* @brief 1D FFT of an Nd array along a specified axis
* @param e an Nd expression to be transformed to the fourier domain
* @param axis the axis along which to perform the 1D FFT
* @return a transformed xarray of the specified precision
*/
template <
class E,
typename std::enable_if<xtl::is_complex<typename std::decay<E>::type::value_type>::value, bool>::type = true>
inline auto fft(E&& e, std::ptrdiff_t axis = -1)
{
using value_type = typename std::decay_t<E>::value_type;
using precision = typename value_type::value_type;
const auto saxis = xt::normalize_axis(e.dimension(), axis);
const size_t N = e.shape(saxis);
const bool powerOfTwo = !(N == 0) && !(N & (N - 1));
xt::xarray<std::complex<precision>> out = xt::eval(e);
auto begin = xt::axis_slice_begin(out, saxis);
auto end = xt::axis_slice_end(out, saxis);
for (auto iter = begin; iter != end; iter++)
{
if (powerOfTwo)
{
xt::noalias(*iter) = detail::radix2(*iter);
}
else
{
xt::noalias(*iter) = detail::transform_bluestein(*iter);
}
}
return out;
}

/**
* @breif 1D FFT of an Nd array along a specified axis
* @param e an Nd expression to be transformed to the fourier domain
* @param axis the axis along which to perform the 1D FFT
* @return a transformed xarray of the specified precision
*/
template <
class E,
typename std::enable_if<!xtl::is_complex<typename std::decay<E>::type::value_type>::value, bool>::type = true>
inline auto fft(E&& e, std::ptrdiff_t axis = -1)
{
using value_type = typename std::decay<E>::type::value_type;
return fft(xt::cast<std::complex<value_type>>(e), axis);
}

template <
class E,
typename std::enable_if<xtl::is_complex<typename std::decay<E>::type::value_type>::value, bool>::type = true>
auto ifft(E&& e, std::ptrdiff_t axis = -1)
{
// check the length of the data on that axis
const std::size_t n = e.shape(axis);
if (n == 0)
{
XTENSOR_THROW(std::runtime_error, "Cannot take the iFFT along an empty dimention");
}
auto complex_args = xt::conj(e);
auto fft_res = xt::fft::fft(complex_args, axis);
fft_res = xt::conj(fft_res);
return fft_res;
}

template <
class E,
typename std::enable_if<!xtl::is_complex<typename std::decay<E>::type::value_type>::value, bool>::type = true>
inline auto ifft(E&& e, std::ptrdiff_t axis = -1)
{
using value_type = typename std::decay<E>::type::value_type;
return ifft(xt::cast<std::complex<value_type>>(e), axis);
}

/*
* @brief performs a circular fft convolution xvec and yvec must
* be the same shape.
* @param xvec first array of the convolution
* @param yvec second array of the convolution
* @param axis axis along which to perform the convolution
*/
template <typename E1, typename E2>
auto convolve(E1&& xvec, E2&& yvec, std::ptrdiff_t axis = -1)
{
// we could broadcast but that could get complicated???
if (xvec.dimension() != yvec.dimension())
{
XTENSOR_THROW(std::runtime_error, "Mismatched dimentions");
}

auto saxis = xt::normalize_axis(xvec.dimension(), axis);
if (xvec.shape(saxis) != yvec.shape(saxis))
{
XTENSOR_THROW(std::runtime_error, "Mismatched lengths along slice axis");
}

const std::size_t n = xvec.shape(saxis);

auto xv = fft(xvec, axis);
auto yv = fft(yvec, axis);

auto begin_x = xt::axis_slice_begin(xv, saxis);
auto end_x = xt::axis_slice_end(xv, saxis);
auto iter_y = xt::axis_slice_begin(yv, saxis);

for (auto iter = begin_x; iter != end_x; iter++)
{
(*iter) = (*iter_y++) * (*iter);
}

auto outvec = ifft(xv, axis);

// Scaling (because this FFT implementation omits it)
outvec = outvec / n;

return outvec;
}

}
} // namespace xt::fft
86 changes: 86 additions & 0 deletions test/test_xfft.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
#include "xtensor/xarray.hpp"
#include "xtensor/xfft.hpp"

#include "test_common_macros.hpp"

namespace xt
{
TEST(xfft, fft_power_2)
{
size_t k = 2;
size_t n = 8192;
size_t A = 10;
auto x = xt::linspace<float>(0, static_cast<float>(n - 1), n);
xt::xarray<float> y = A * xt::sin(2 * xt::numeric_constants<float>::PI * x * k / n);
auto res = xt::fft::fft(y) / (n / 2);
REQUIRE(A == doctest::Approx(std::abs(res(k))).epsilon(.0001));
}

TEST(xfft, ifft_power_2)
{
size_t k = 2;
size_t n = 8;
size_t A = 10;
auto x = xt::linspace<float>(0, static_cast<float>(n - 1), n);
xt::xarray<float> y = A * xt::sin(2 * xt::numeric_constants<float>::PI * x * k / n);
auto res = xt::fft::ifft(y) / (n / 2);
REQUIRE(A == doctest::Approx(std::abs(res(k))).epsilon(.0001));
}

TEST(xfft, convolve_power_2)
{
xt::xarray<float> x = {1.0, 1.0, 1.0, 5.0};
xt::xarray<float> y = {5.0, 1.0, 1.0, 1.0};
xt::xarray<float> expected = {12, 12, 12, 28};

auto result = xt::fft::convolve(x, y);

for (size_t i = 0; i < x.size(); i++)
{
REQUIRE(expected(i) == doctest::Approx(std::abs(result(i))).epsilon(.0001));
}
}

TEST(xfft, fft_n_0_axis)
{
size_t k = 2;
size_t n = 10;
size_t A = 1;
size_t dim = 10;
auto x = xt::linspace<float>(0, n - 1, n) * xt::ones<float>({dim, n});
xt::xarray<float> y = A * xt::sin(2 * xt::numeric_constants<float>::PI * x * k / n);
y = xt::transpose(y);
auto res = xt::fft::fft(y, 0) / (n / 2.0);
REQUIRE(A == doctest::Approx(std::abs(res(k, 0))).epsilon(.0001));
REQUIRE(A == doctest::Approx(std::abs(res(k, 1))).epsilon(.0001));
}

TEST(xfft, fft_n_1_axis)
{
size_t k = 2;
size_t n = 15;
size_t A = 1;
size_t dim = 2;
auto x = xt::linspace<float>(0, n - 1, n) * xt::ones<float>({dim, n});
xt::xarray<float> y = A * xt::sin(2 * xt::numeric_constants<float>::PI * x * k / n);
auto res = xt::fft::fft(y) / (n / 2.0);
REQUIRE(A == doctest::Approx(std::abs(res(0, k))).epsilon(.0001));
REQUIRE(A == doctest::Approx(std::abs(res(1, k))).epsilon(.0001));
}

TEST(xfft, convolve_n)
{
xt::xarray<float> x = {1.0, 1.0, 1.0, 5.0, 1.0};
xt::xarray<float> y = {5.0, 1.0, 1.0, 1.0, 1.0};
xt::xarray<size_t> expected = {13, 13, 13, 29, 13};

auto result = xt::fft::convolve(x, y);

xt::xarray<float> abs = xt::abs(result);

for (size_t i = 0; i < abs.size(); i++)
{
REQUIRE(expected(i) == doctest::Approx(abs(i)).epsilon(.0001));
}
}
}

0 comments on commit 197b144

Please sign in to comment.