TorchBench V2 nightly #11
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: TorchBench V2 nightly | |
on: | |
workflow_dispatch: | |
schedule: | |
- cron: '0 14 * * *' # run at 2 PM UTC | |
jobs: | |
run-benchmark: | |
environment: docker-s3-upload | |
env: | |
TORCHBENCH_VER: "v2" | |
CONFIG_VER: "v2" | |
PYTHON_VER: "3.10" | |
CUDA_VER: "12.1" | |
MAGMA_VERSION: "magma-cuda121" | |
CONDA_ENV_NAME: "torchbench-v2-nightly-ci" | |
OUTPUT_DIR: ".torchbench/v2-nightly-ci" | |
BISECTION_ROOT: ".torchbench/v2-bisection-ci" | |
CUDA_VERSION: "cu121" | |
SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.SCRIBE_GRAPHQL_ACCESS_TOKEN }} | |
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }} | |
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }} | |
IS_GHA: 1 | |
AWS_DEFAULT_REGION: us-east-1 | |
BUILD_ENVIRONMENT: benchmark-nightly | |
if: ${{ github.repository_owner == 'pytorch' }} | |
runs-on: [self-hosted, bm-runner] | |
steps: | |
- name: Checkout | |
uses: actions/checkout@v3 | |
with: | |
ref: v2.0 | |
- name: Create conda env | |
run: | | |
conda create -y -q --name "${CONDA_ENV_NAME}" python=${{ env.PYTHON_VER }} | |
- name: Install PyTorch nightly | |
run: | | |
. activate "${CONDA_ENV_NAME}" | |
. /data/nvme/bin/setup_instance.sh | |
# Install dependencies | |
pip install requests bs4 argparse gitpython boto3 regex | |
# Check if nightly builds are available | |
NIGHTLIES=$(python torchbenchmark/util/torch_nightly.py --packages torch) | |
# If failed, the script will generate empty result | |
if [ -z $NIGHTLIES ]; then | |
echo "Torch nightly build failed. Cancel the workflow." | |
exit 1 | |
fi | |
# Install magma | |
conda install -y -c pytorch "${MAGMA_VERSION}" | |
# Install PyTorch nightly from pip | |
pip install --no-cache-dir --pre torch torchvision torchaudio --index-url \ | |
https://download.pytorch.org/whl/nightly/${CUDA_VERSION} | |
- name: Install other TorchBench dependencies | |
run: | | |
. activate "${CONDA_ENV_NAME}" | |
. /data/nvme/bin/setup_instance.sh | |
conda install -y git-lfs | |
python install.py | |
- name: Run benchmark | |
run: | | |
. activate "${CONDA_ENV_NAME}" | |
. /data/nvme/bin/setup_instance.sh | |
WORKFLOW_HOME="${HOME}/${{ env.OUTPUT_DIR }}/gh${GITHUB_RUN_ID}" | |
bash ./.github/scripts/run.sh "${WORKFLOW_HOME}" | |
- name: Generate the bisection config | |
run: | | |
set -x | |
. activate "${CONDA_ENV_NAME}" | |
WORKFLOW_HOME="${HOME}/${{ env.OUTPUT_DIR }}/gh${GITHUB_RUN_ID}" | |
mkdir -p benchmark-output/ | |
# Update the self-hosted pytorch version | |
pushd "${HOME}/pytorch" | |
git fetch origin | |
popd | |
pip install gitpython pyyaml dataclasses argparse | |
# Compare the result from yesterday and report any perf signals | |
python ./.github/scripts/generate-abtest-config.py \ | |
--pytorch-dir "${HOME}/pytorch" \ | |
--github-issue "${WORKFLOW_HOME}/gh-issue.md" \ | |
--benchmark-dir "${WORKFLOW_HOME}" \ | |
--out "${WORKFLOW_HOME}/bisection.yaml" | |
# Include in the GitHub artifact | |
if [ -f "${WORKFLOW_HOME}/gh-issue.md" ]; then | |
cp "${WORKFLOW_HOME}/bisection.yaml" ./benchmark-output/ | |
cp "${WORKFLOW_HOME}/gh-issue.md" ./benchmark-output/ | |
# Setup the bisection environment | |
BISECTION_HOME="${HOME}/${{ env.BISECTION_ROOT }}/bisection-gh${GITHUB_RUN_ID}" | |
mkdir -p "${BISECTION_HOME}" | |
mv ./benchmark-output/gh-issue.md "${BISECTION_HOME}/gh-issue.md" | |
cp ./benchmark-output/bisection.yaml "${BISECTION_HOME}/config.yaml" | |
fi | |
- name: Dispatch the bisection workflow | |
if: env.TORCHBENCH_PERF_SIGNAL | |
run: | | |
# Get the workflow ID from | |
# https://api.github.com/repos/pytorch/benchmark/actions/workflows | |
curl -u xuzhao9:${{ secrets.TORCHBENCH_ACCESS_TOKEN }} \ | |
-X POST \ | |
-H "Accept: application/vnd.github.v3+json" \ | |
https://api.github.com/repos/pytorch/benchmark/actions/workflows/16176850/dispatches \ | |
-d '{"ref": "main", "inputs": {"issue_name": "bisection-gh'"${GITHUB_RUN_ID}"'" } }' | |
- name: Copy artifact and upload to scribe | |
run: | | |
. activate "${CONDA_ENV_NAME}" | |
TODAY=$(date "+%Y%m%d%H%M%S") | |
LATEST_RESULT=$(find ${HOME}/${{ env.OUTPUT_DIR }}/gh${GITHUB_RUN_ID} -name "*.json" | sort -r | head -1) | |
echo "Benchmark result file: ${LATEST_RESULT}" | |
mkdir -p benchmark-output/ | |
cp "${LATEST_RESULT}" ./benchmark-output/benchmark-result-${CONFIG_VER}-${TODAY}.json | |
# Load environment variables | |
CONFIG_DIR=torchbenchmark/score/configs/${CONFIG_VER} | |
CONFIG_ENV=${CONFIG_DIR}/config-${CONFIG_VER}.env | |
# Load environment variables | |
set -a; source "${CONFIG_ENV}"; set +a | |
SCORE_FILE="./benchmark-result-${CONFIG_VER}-score-${TODAY}.json" | |
# Generate score file | |
python compute_score.py --score_version "${CONFIG_VER}" --benchmark_data_file "${LATEST_RESULT}" --output-json "${SCORE_FILE}" | |
# Upload result to Scribe | |
python scripts/upload_scribe_${CONFIG_VER}.py --pytest_bench_json "${LATEST_RESULT}" --torchbench_score_file "${SCORE_FILE}" | |
- name: Upload artifact | |
uses: actions/upload-artifact@v3 | |
with: | |
name: Benchmark result | |
path: benchmark-output/ | |
- name: Destroy conda env | |
run: | | |
conda env remove --name "${CONDA_ENV_NAME}" |