Package of data and methods for spatial epidemiology.
Get the released version from CRAN:
install.packages("SpatialEpi")
Or the development version from GitHub:
# If you haven't installed devtools yet, do so:
# install.packages("devtools")
devtools::install_github("rudeboybert/SpatialEpi")
Note: In order for all C++ code to compile correctly you may need to
-
Install the
cpp11
package -
Install an older version of
RcppArmadillo
by runningpackageurl <- "https://cran.r-project.org/src/contrib/Archive/RcppArmadillo/RcppArmadillo_0.9.900.3.0.tar.gz" install.packages(packageurl, repos=NULL, type="source")
We load the data and convert the coordinate system from latitude/longitude to a grid-based system.
library(SpatialEpi)
data(NYleukemia)
sp.obj <- NYleukemia$spatial.polygon
centroids <- latlong2grid(NYleukemia$geo[, 2:3])
population <- NYleukemia$data$population
cases <- NYleukemia$data$cases
We plot the incidence of leukemia for each census tract.
plotmap(cases/population, sp.obj, log=TRUE, nclr=5)
points(grid2latlong(centroids), pch=4)
We run the Bayesian Cluster Detection method from Wakefield and Kim (2013):
y <- cases
E <- expected(population, cases, 1)
max.prop <- 0.15
shape <- c(2976.3, 2.31)
rate <- c(2977.3, 1.31)
J <- 7
pi0 <- 0.95
n.sim.lambda <- 10^4
n.sim.prior <- 10^5
n.sim.post <- 10^5
# Compute output
output <- bayes_cluster(y, E, population, sp.obj, centroids, max.prop,
shape, rate, J, pi0, n.sim.lambda, n.sim.prior,
n.sim.post)
#> [1] "Algorithm started on: Thu Jun 10 16:38:10 2021"
#> [1] "Importance sampling of lambda complete on: Thu Jun 10 16:39:11 2021"
#> [1] "Prior map MCMC complete on: Thu Jun 10 16:43:03 2021"
#> [1] "Posterior estimation complete on: Thu Jun 10 16:56:47 2021"
plotmap(output$post.map$high.area, sp.obj)
#> Warning in wkt(obj): CRS object has no comment
#> Warning in wkt(obj): CRS object has no comment