Skip to content

Commit

Permalink
Update chromatic-dispersion
Browse files Browse the repository at this point in the history
  • Loading branch information
ricktu288 committed Oct 16, 2024
1 parent 5f7183c commit 8206bb8
Show file tree
Hide file tree
Showing 12 changed files with 64 additions and 48 deletions.
Binary file modified src/img/6.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified src/webpages/cn/6.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
16 changes: 8 additions & 8 deletions src/webpages/cn/gallery/chromatic-dispersion.json
Original file line number Diff line number Diff line change
Expand Up @@ -316,27 +316,27 @@
{
"type": "TextLabel",
"x": 419.47561821366054,
"y": 337.8461116752542,
"y": 343.8461116752542,
"text": "拖曳此处\n可调整光束宽度",
"fontSize": 18
"fontSize": 12
},
{
"type": "TextLabel",
"x": 502.9456926915665,
"x": 504.9456926915665,
"y": 502.1990798526488,
"text": "拖曳此处\n可旋转棱镜",
"fontSize": 18,
"fontSize": 12,
"alignment": "right"
},
{
"type": "CropBox",
"p1": {
"x": 264.89949164838754,
"y": 289.88859819346663
"x": 224.10839465489053,
"y": 285.8027072321243
},
"p4": {
"x": 817.9904007392967,
"y": 585.5249618298303
"x": 911.1083946548902,
"y": 607.3531292667758
}
},
{
Expand Down
12 changes: 8 additions & 4 deletions src/webpages/cn/gallery/data.json
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,8 @@
{
"id": "chaff-countermeasure",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "干扰箔",
"description": "<p>这是一个箔片反射对雷达效应的定性模拟(忽略衍射效应)。</p>"
Expand Down Expand Up @@ -363,7 +364,8 @@
{
"id": "GRIN-slab",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "渐变折射率平板",
"description": "<p>模拟折射率 \\(n(\\rho) = n_0 \\sqrt{1-(\\alpha \\rho)^2}\\)的介电材料,其中 \\(n_0\\) 是其中央轴的折射率,\\(\\rho \\) 是从其中央轴的径向距离,使得 \\(\\alpha=\\frac{\\sqrt{3}}{2R} \\),其中 \\(R=100 \\) 是其半径。上方的介电材料为一系列的薄矩形,每个矩形具有恒定的折射率(根据前述 \\(n(\\rho)\\) 的式子)。下方的介电材料是折射率为\\(n(\\rho)\\)的渐变折射率材料。 </p>"
Expand Down Expand Up @@ -395,15 +397,17 @@
{
"id": "luneburg-lens",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "龙勃透镜",
"description": "<p>龙勃透镜(Luneburg lens)是一个球形介电材料,折射率为 \\(n(\\rho) = \\sqrt{n_0-(\\frac{\\rho}{R})^2} \\),其中 \\(n_0=2\\) 是其球心的折射率,\\(R=100\\) 是球的半径,\\(\\rho\\) 是与球心的距离。 </p><p>上方的介电材料为由 \\(N=20\\) 个同心球组成的龙勃透镜,半径 \\(R_i=5(N+1-i)\\),折射率 \\(n_i = \\sqrt{n_0-(\\frac{R_i}{R})^2} \\),其中 \\(i=1,...,N\\)。然而,由于此模拟器会将互相重叠的光学元件的折射率相乘,所以第 \\(i\\) 个同心球形镜的数值折射率为 \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\)。 </p><p>下方的介电材料是折射率为\\(n(r)\\)的渐变折射率材料。 </p>"
},
{
"id": "maxwell-fisheye-lens",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "麦克斯韦鱼眼透镜",
"description": "<p>麦克斯韦鱼眼透镜(Maxwell fisheye lens)是一个球形介电材料,折射率为 \\(n(\\rho) = \\frac{n_0}{1+(\\frac{\\rho}{R})^2} \\),其中 \\(n_0=2\\) 是其球心的折射率,\\(R=100\\) 是球的半径,\\(\\rho\\) 是与球心的距离。 </p><p>上方的介电材料为由 \\(N=20\\) 个同心球组成的麦克斯韦鱼眼透镜,半径 \\(R_i=5(N+1-i)\\),折射率 \\(n_i = \\frac{n_0}{1+(\\frac{R_i}{R})^2} \\),其中 \\(i=1,...,N\\)。然而,由于此模拟器会将互相重叠的光学元件的折射率相乘,所以第 \\(i\\) 个同心球形镜的数值折射率为 \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\)。 </p><p>下方的介电材料是折射率为\\(n(r)\\)的渐变折射率材料。 </p>"
Expand Down
16 changes: 8 additions & 8 deletions src/webpages/gallery/chromatic-dispersion.json
Original file line number Diff line number Diff line change
Expand Up @@ -316,27 +316,27 @@
{
"type": "TextLabel",
"x": 419.47561821366054,
"y": 337.8461116752542,
"y": 343.8461116752542,
"text": "Drag here to\nadjust beam width",
"fontSize": 18
"fontSize": 12
},
{
"type": "TextLabel",
"x": 502.9456926915665,
"x": 504.9456926915665,
"y": 502.1990798526488,
"text": "Drag here to\nrotate the prism",
"fontSize": 18,
"fontSize": 12,
"alignment": "right"
},
{
"type": "CropBox",
"p1": {
"x": 264.89949164838754,
"y": 289.88859819346663
"x": 224.10839465489053,
"y": 285.8027072321243
},
"p4": {
"x": 817.9904007392967,
"y": 585.5249618298303
"x": 911.1083946548902,
"y": 607.3531292667758
}
},
{
Expand Down
12 changes: 8 additions & 4 deletions src/webpages/gallery/data.json
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,8 @@
{
"id": "chaff-countermeasure",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "Chaff countermeasure",
"description": "<p>This is a qualitative simulation of the effect that the chaff countermeasure has on a radar (ignoring diffraction effects).</p>"
Expand Down Expand Up @@ -363,7 +364,8 @@
{
"id": "GRIN-slab",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "GRIN slab",
"description": "<p>This is a simulation of a rectangular dielectric material with a refractive index \\(n(\\rho) = n_0 \\sqrt{1-(\\alpha \\rho)^2}\\), where \\(n_0=2\\) is the refractive index on its central axis and \\(\\rho \\) is the radial distance from its central axis, such that \\(\\alpha=\\frac{\\sqrt{3}}{2R} \\) where \\(R=100 \\) is its radius.<br>The top dielectric in this simulation is made of thin dielectric rectangles of constant refractive index, according to \\(n(\\rho)\\), while the bottom dielectric is a gradient-index material with the refractive index \\(n(\\rho)\\).</p>"
Expand Down Expand Up @@ -395,15 +397,17 @@
{
"id": "luneburg-lens",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "Luneburg lens",
"description": "<p>This is a simulation of a Luneburg lens, which is a spherical dielectric with refractive index \\(n(r) = \\sqrt{n_0-(\\frac{r}{R})^2} \\), where \\(n_0=2\\) is the refractive index in the center of the lens, \\(R=100\\) is the radius of the lens, and \\(r\\) is the radial distance from the center of the lens.</p><p>The top dielectric is composed of \\(N=20\\) concentric spherical lenses with radius \\(R_i=5(N+1-i)\\) and refractive index \\(n_i = \\sqrt{n_0-(\\frac{R_i}{R})^2} \\), where \\(i=1,...,N\\). However, since this simulator calculates the effective refractive index of an optical element by multiplying the element's numerical refractive index with the numerical refractive indices of the optical elements which are embedded within it, the numerical refractive index of the \\(i\\)th concentric spherical lens is given by \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\).</p><p>The bottom dielectric is a gradient-index material with the refractive index \\(n(r)\\).</p>"
},
{
"id": "maxwell-fisheye-lens",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "Maxwell fisheye lens",
"description": "<p>This is a simulation of a Maxwell fish-eye lens, which is a spherical dielectric with refractive index \\(n(r) = \\frac{n_0}{1+(\\frac{r}{R})^2} \\), where \\(n_0=2\\) is the refractive index in the center of the lens, \\(R=100\\) is the radius of the lens, and \\(r\\) is the radial distance from the center of the lens.</p><p>The top dielectric is composed of \\(N=20\\) concentric spherical lenses with radius \\(R_i=5(N+1-i)\\) and refractive index \\(n_i = \\frac{n_0}{1+(\\frac{R_i}{R})^2} \\), where \\(i=1,...,N\\). However, since this simulator calculates the effective refractive index of an optical element by multiplying the element's numerical refractive index with the numerical refractive indices of the optical elements which are embedded within it, the numerical refractive index of the \\(i\\)th concentric spherical lens is given by \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\).</p><p>The bottom dielectric is a gradient-index material with the refractive index \\(n(r)\\).</p>"
Expand Down
Binary file modified src/webpages/pl/6.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
16 changes: 8 additions & 8 deletions src/webpages/pl/gallery/chromatic-dispersion.json
Original file line number Diff line number Diff line change
Expand Up @@ -316,27 +316,27 @@
{
"type": "TextLabel",
"x": 419.47561821366054,
"y": 337.8461116752542,
"y": 343.8461116752542,
"text": "przeciągnij tutaj\n aby ustawić szerokość wiązki",
"fontSize": 18
"fontSize": 12
},
{
"type": "TextLabel",
"x": 502.9456926915665,
"x": 504.9456926915665,
"y": 502.1990798526488,
"text": "przeciągnij tutaj\naby obrócić pryzmat",
"fontSize": 18,
"fontSize": 12,
"alignment": "right"
},
{
"type": "CropBox",
"p1": {
"x": 264.89949164838754,
"y": 289.88859819346663
"x": 224.10839465489053,
"y": 285.8027072321243
},
"p4": {
"x": 817.9904007392967,
"y": 585.5249618298303
"x": 911.1083946548902,
"y": 607.3531292667758
}
},
{
Expand Down
12 changes: 8 additions & 4 deletions src/webpages/pl/gallery/data.json
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,8 @@
{
"id": "chaff-countermeasure",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "Dipole odbijające (chaff)",
"description": "<p>Jest to jakościowa symulacja systemu przeciwdziałania namiarom radarowym (pomijając efekty dyfrakcyjne).</p>"
Expand Down Expand Up @@ -363,7 +364,8 @@
{
"id": "GRIN-slab",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "Płyta GRIN (gradientowa)",
"description": "<p>Jest to symulacja prostokątnego materiału dielektrycznego o współczynniku załamania \\(n(\rho) = n_0 \\sqrt{1-(\\alpha \\rho)^2}\\), gdzie \\(n_0=2\\) jest współczynnikiem załamania światła na jego osi centralnej, a \\(\\rho \\) jest odległością radialną od jego osi centralnej, taką, że \\(\\alpha=\\frac{\\sqrt{3}}{2R} \\), gdzie \\(R=100 \\) jest jego promieniem.<br>Górny dielektryk w tej symulacji składa się z cienkich prostokątów dielektrycznych o stałym współczynniku załamania światła, zgodnie z \\(n(\\rho)\\), podczas gdy dolny dielektryk jest materiałem gradientowym o współczynniku załamania \\(n(\rho)\\).</p>"
Expand Down Expand Up @@ -395,15 +397,17 @@
{
"id": "luneburg-lens",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "Soczewka Luneburga",
"description": "<p>Symulacja soczewki Luneburga, która jest sferycznym dielektrykiem o współczynniku załamania światła \\(\\rho) = \\sqrt{n_0-(\\frac{\\rho}{R})^2} \\), gdzie \\(n_0=2\\) to współczynnik załamania w środku soczewki soczewki, \\(R=100\\) to promień soczewki, a \\(\rho\\) to odległość od środka soczewki.</p><p>Górny dielektryk składa się z \\(N=20\\) koncentrycznych soczewek sferycznych o promieniu \\(R_i=5(N+1-i)\\) i współczynniku załamania światła \\(n_i = \\sqrt{n_0-(\\frac{R_i}{R})^2} \\), gdzie \\(i=1,...,N\\). Jednakże, ponieważ ten symulator oblicza efektywny współczynnik załamania światła elementu optycznego poprzez pomnożenie współczynnika załamania elementu przez współczynniki załamania elementów optycznych, które są w nim osadzone, współczynnik załamania \\(i\\)-tej koncentrycznej soczewki sferycznej jest określony wzorem \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\).</p><p>Dolny dielektryk jest materiałem gradientowym o współczynniku załamania \\(n(r)\\).</p>"
},
{
"id": "maxwell-fisheye-lens",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "Soczewka rybie oko Maxwella",
"description": "<p>To jest symulacja soczewki typu rybie oko Maxwella, która jest sferycznym dielektrykiem o współczynniku załamania światła \\(n(\\rho) = \\frac{n_0}{1+(\\frac{\\rho}{R})^2} \\), gdzie \\(n_0=2\\) to współczynnik załamania w środku soczewki soczewki, \\(R=100\\) to promień soczewki, a \\(\\rho\\) to odległość od środka soczewki.</p><p>Górny dielektryk składa się z \\(N=20\\) koncentrycznych soczewek sferycznych o promieniu \\(R_i=5(N+1-i)\\) i współczynniku załamania światła \\(n_i = \\frac{n_0}{1+(\\frac{R_i}{R})^2} \\), gdzie \\(i=1,...,N\\). Jednakże, ponieważ ten symulator oblicza efektywny współczynnik załamania światła elementu optycznego poprzez pomnożenie współczynnika załamania elementu przez współczynniki załamania elementów optycznych, które są w nim osadzone, współczynnik załamania \\(i\\)-tej koncentrycznej soczewki sferycznej jest określony wzorem \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\).</p><p>Dolny dielektryk jest materiałem gradientowym o współczynniku załamania \\(n(r)\\).</p>"
Expand Down
Binary file modified src/webpages/tw/6.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
16 changes: 8 additions & 8 deletions src/webpages/tw/gallery/chromatic-dispersion.json
Original file line number Diff line number Diff line change
Expand Up @@ -316,27 +316,27 @@
{
"type": "TextLabel",
"x": 419.47561821366054,
"y": 337.8461116752542,
"y": 343.8461116752542,
"text": "拖曳此處\n可調整光束寬度",
"fontSize": 18
"fontSize": 12
},
{
"type": "TextLabel",
"x": 502.9456926915665,
"x": 504.9456926915665,
"y": 502.1990798526488,
"text": "拖曳此處\n可旋轉棱鏡",
"fontSize": 18,
"fontSize": 12,
"alignment": "right"
},
{
"type": "CropBox",
"p1": {
"x": 264.89949164838754,
"y": 289.88859819346663
"x": 224.10839465489053,
"y": 285.8027072321243
},
"p4": {
"x": 817.9904007392967,
"y": 585.5249618298303
"x": 911.1083946548902,
"y": 607.3531292667758
}
},
{
Expand Down
12 changes: 8 additions & 4 deletions src/webpages/tw/gallery/data.json
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,8 @@
{
"id": "chaff-countermeasure",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "干擾箔",
"description": "<p>這是一個箔片反射對雷達效應的定性模擬(忽略繞射效應)。</p>"
Expand Down Expand Up @@ -363,7 +364,8 @@
{
"id": "GRIN-slab",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "漸變折射率平板",
"description": "<p>模擬折射率 \\(n(\\rho) = n_0 \\sqrt{1-(\\alpha \\rho)^2}\\)的介電材料,其中 \\(n_0\\) 是其中央軸的折射率,\\(\\rho \\) 是從其中央軸的徑向距離,使得 \\(\\alpha=\\frac{\\sqrt{3}}{2R} \\),其中 \\(R=100 \\) 是其半徑。上方的介電材料為一系列的薄矩形,每個矩形具有恆定的折射率(根據前述 \\(n(\\rho)\\) 的式子)。下方的介電材料是折射率為\\(n(\\rho)\\)的漸變折射率材料。</p>"
Expand Down Expand Up @@ -395,15 +397,17 @@
{
"id": "luneburg-lens",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "龍伯透鏡",
"description": "<p>龍伯透鏡(Luneburg lens)是一個球形介電材料,折射率為 \\(n(\\rho) = \\sqrt{n_0-(\\frac{\\rho}{R})^2} \\),其中 \\(n_0=2\\) 是其球心的折射率,\\(R=100\\) 是球的半徑,\\(\\rho\\) 是與球心的距離。</p><p>上方的介電材料為由 \\(N=20\\) 個同心球組成的龍伯透鏡,半徑 \\(R_i=5(N+1-i)\\),折射率 \\(n_i = \\sqrt{n_0-(\\frac{R_i}{R})^2} \\),其中 \\(i=1,...,N\\)。然而,由於此模擬器會將互相重疊的光學元件的折射率相乘,所以第 \\(i\\) 個同心球形鏡的數值折射率為 \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\)。</p><p>下方的介電材料是折射率為\\(n(r)\\)的漸變折射率材料。</p>"
},
{
"id": "maxwell-fisheye-lens",
"contributors": [
"Stas Fainer", "Yi-Ting Tu"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "馬克士威魚眼透鏡",
"description": "<p>馬克士威魚眼透鏡(Maxwell fisheye lens)是一個球形介電材料,折射率為 \\(n(\\rho) = \\frac{n_0}{1+(\\frac{\\rho}{R})^2} \\),其中 \\(n_0=2\\) 是其球心的折射率,\\(R=100\\) 是球的半徑,\\(\\rho\\) 是與球心的距離。</p><p>上方的介電材料為由 \\(N=20\\) 個同心球組成的馬克士威魚眼透鏡,半徑 \\(R_i=5(N+1-i)\\),折射率 \\(n_i = \\frac{n_0}{1+(\\frac{R_i}{R})^2} \\),其中 \\(i=1,...,N\\)。然而,由於此模擬器會將互相重疊的光學元件的折射率相乘,所以第 \\(i\\) 個同心球形鏡的數值折射率為 \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\)。</p><p>下方的介電材料是折射率為\\(n(r)\\)的漸變折射率材料。</p>"
Expand Down

0 comments on commit 8206bb8

Please sign in to comment.