-
Notifications
You must be signed in to change notification settings - Fork 67
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* ENH: Add `autogreek.gamma_from_delta` (close #397) (#552) * ENH: Analytical BS European binary formulas (#437) (#553) * ENH: Analytical BS American binary formulas (#437) (#554) * DOC: Add notes on analytic formulas of price and greeks (#556) * DOC: Fix notebook and clear outputs (close #402) (#557) * DOC: Fix typo in `generate_local_volatility_process` (#551) * Bumping version from 0.19.0 to 0.19.1 (#559) Co-authored-by: GitHub Actions <[email protected]> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: GitHub Actions <[email protected]>
- Loading branch information
1 parent
e19efce
commit b45416a
Showing
10 changed files
with
398 additions
and
329 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
\documentclass{article} | ||
\usepackage{amsmath} | ||
\usepackage{amssymb} | ||
\usepackage{color} | ||
\usepackage[breaklinks,colorlinks=true]{hyperref} | ||
|
||
\definecolor{Blue}{RGB}{0,122,255} | ||
\hypersetup{colorlinks,breaklinks,urlcolor=Blue,linkcolor=Blue,citecolor=Blue,urlcolor=Blue} | ||
|
||
\def\Pr{\mathop{\mathbb{P}}} | ||
\newcommand\Ex{\mathop{\mathbb{E}}} | ||
\newcommand\br[1]{\left(#1\right)} | ||
\newcommand\bbr[1]{\left[#1\right]} | ||
\newcommand\cbr[1]{\left\{#1\right\}} | ||
\newcommand\pd[2]{\frac{\partial #1}{\partial #2}} | ||
|
||
|
||
\begin{document} | ||
|
||
\title{Price and greeks of American binary option} | ||
\date{} | ||
|
||
\maketitle | ||
|
||
|
||
Consider an asset with spot price $S = \{S_t; 0 \leq t \leq T\}$ following geometric Brownian motion of volatility $\sigma$. | ||
|
||
An American binary call option with strike $K$ and maturity $T$ pays off | ||
\begin{align} | ||
\text{Payoff} | ||
= 1_{\max\{S_t; 0 \leq t \leq T\} \geq K} , | ||
\end{align} | ||
where | ||
$1_{\max\{S_t; 0 \leq t \leq T\} \geq K}$ is an indicator function. | ||
|
||
|
||
\section*{Price} | ||
|
||
|
||
Let $W = \{W_t; 0 \leq t \leq T\}$ be Brownian motion driving $S$. | ||
We define the cumulative maximum of $W$ by $M_t = \max\{W_u; 0 \leq u \leq t\}$ and | ||
consider $\hat M_t = M_t - \frac12 \sigma t$. | ||
According to Corollary 7.2.2 of Ref.~\cite{shreve}, if $S_0 < K$, | ||
\begin{align} | ||
\Pr[\hat M_t \geq m] | ||
= 1 - N\br{\frac{m}{\sqrt{t}} + \frac12 \sigma \sqrt{t}} | ||
+ e^{-\sigma m} N\br{-\frac{m}{\sqrt{t}} + \frac12 \sigma \sqrt{t}} , | ||
\end{align} | ||
where | ||
$N$ is the cumulative distribution function of the normal distribution. | ||
A condition to get the payoff of unity, $\max\{S_t; 0 \leq t \leq T\} \geq K$, is equivalent to $\hat M_T \geq - \sigma^{-1} \log(S_0 / K)$. | ||
Therefore, the price of the American binary call option is given by | ||
$1$ if $S_0 \geq K$ and otherwise | ||
\begin{align} | ||
\text{Price} | ||
& = \Ex[1_{\max\{S_t; 0 \leq t \leq T\} \geq K}] \notag \\ | ||
& = \Pr\bbr{\hat M_T \geq - \frac{1}{\sigma}\log\br{\frac{S_0}{K}}} \notag \\ | ||
& = 1 - N\br{- \frac{\log(S_0 / K)}{\sigma \sqrt{T}} + \frac12 \sigma \sqrt{T}} | ||
+ N\br{\frac{\log(S_0 / K)}{\sigma \sqrt{T}} + \frac12 \sigma \sqrt{T}} | ||
\notag \\ | ||
& = N(d_2) + \frac{S_0}{K} N(d_1) , | ||
\end{align} | ||
where | ||
\begin{align} | ||
d_1 | ||
= \frac{\log (S_0 / K)}{\sigma \sqrt{T}} + \frac12 \sigma \sqrt{T} , | ||
\quad | ||
d_2 | ||
= \frac{\log (S_0 / K)}{\sigma \sqrt{T}} - \frac12 \sigma \sqrt{T} . | ||
\end{align} | ||
|
||
|
||
\section*{Delta} | ||
|
||
|
||
Delta is given by | ||
$0$ if $S_0 \geq K$ and otherwise | ||
\begin{align} | ||
\text{Delta} | ||
= \frac{N^\prime(d_2)}{S_0 \sigma \sqrt{T}} | ||
+ \frac{N(d_1)}{K} | ||
+ \frac{N^\prime(d_1)}{K \sigma \sqrt{T}} , | ||
\end{align} | ||
where | ||
we used a derivative $\partial d_1 / \partial S_0 = \partial d_2 / \partial S_0 = 1 / (S_0 \sigma \sqrt{T})$. | ||
|
||
|
||
\section*{Gamma} | ||
|
||
|
||
Gamma is given by | ||
$0$ if $S_0 \geq K$ and otherwise | ||
\begin{align} | ||
\text{Gamma} | ||
& = - \frac{N^\prime(d_2)}{S_0^2 \sigma \sqrt{T}} | ||
+ \frac{N^{\prime\prime}(d_2)}{S_0^2 \sigma^2 T} | ||
+ \frac{N^\prime(d_1)}{S_0 K \sigma \sqrt{T}} | ||
+ \frac{N^{\prime\prime}(d_1)}{S_0 K \sigma^2 T} \notag \\ | ||
& = - \frac{N^\prime(d_2)}{S_0^2 \sigma \sqrt{T}} | ||
- \frac{d_2 N^\prime(d_2)}{S_0^2 \sigma^2 T} | ||
+ \frac{N^\prime(d_1)}{S_0 K \sigma \sqrt{T}} | ||
- \frac{N^\prime(d_1)}{S_0 K \sigma^2 T} , | ||
\label{eq:gamma} | ||
\end{align} | ||
where we used a relation $N^{\prime\prime}(x) = - x N^\prime(x)$ to show the second equality. | ||
|
||
|
||
\begin{thebibliography}{1} | ||
\bibitem{shreve} Shreve, S.E., 2004. Stochastic calculus for finance II: Continuous-time models (Vol. 11). New York: springer. | ||
\end{thebibliography} | ||
|
||
|
||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
\documentclass{article} | ||
\usepackage{amsmath} | ||
\usepackage{amssymb} | ||
\usepackage{color} | ||
\usepackage[breaklinks,colorlinks=true]{hyperref} | ||
|
||
\definecolor{Blue}{RGB}{0,122,255} | ||
\hypersetup{colorlinks,breaklinks,urlcolor=Blue,linkcolor=Blue,citecolor=Blue,urlcolor=Blue} | ||
|
||
\def\Pr{\mathop{\mathbb{P}}} | ||
\newcommand\Ex{\mathop{\mathbb{E}}} | ||
\newcommand\br[1]{\left(#1\right)} | ||
\newcommand\bbr[1]{\left[#1\right]} | ||
\newcommand\cbr[1]{\left\{#1\right\}} | ||
\newcommand\pd[2]{\frac{\partial #1}{\partial #2}} | ||
|
||
|
||
\begin{document} | ||
|
||
\title{Price and greeks of European binary option} | ||
\date{} | ||
|
||
\maketitle | ||
|
||
|
||
Consider an asset with spot price $S = \{S_t; 0 \leq t \leq T\}$ following geometric Brownian motion of volatility $\sigma$. | ||
|
||
A European binary call option with strike $K$ and maturity $T$ pays off | ||
\begin{align} | ||
\text{Payoff}_\text{Call} | ||
= 1_{S_T \geq K} , | ||
\end{align} | ||
where | ||
$1_{S_T \geq K}$ is an indicator function. | ||
A European binary put option with the same strike and maturity pays off | ||
\begin{align} | ||
\text{Payoff}_\text{Put} | ||
= 1_{S_T \leq K} . | ||
\end{align} | ||
|
||
|
||
|
||
\section*{Price} | ||
|
||
|
||
The price of the European binary call option is given by | ||
\begin{align} | ||
\text{Price}_\text{Call} | ||
= \Ex[1_{S_T \geq K}] = N(d_2) , | ||
\end{align} | ||
where | ||
$N$ is the cumulative distribution function of the normal distribution and | ||
\begin{align} | ||
d_2 | ||
= \frac{\log (S_0 / K)}{\sigma \sqrt{T}} - \frac12 \sigma \sqrt{T} . | ||
\end{align} | ||
|
||
The price of a European binary put option is given by $1 - \text{Price}_\text{Call}$ | ||
because a relation $\text{Payoff}_\text{Call} + \text{Payoff}_\text{Put} = 1$ holds almost surely. | ||
|
||
|
||
\section*{Delta} | ||
|
||
|
||
Delta is given by | ||
\begin{align} | ||
\text{Delta}_\text{Call} | ||
= \frac{N^\prime(d_2)}{S_0 \sigma \sqrt{T}} , | ||
\end{align} | ||
where | ||
we used a derivative $\partial d_2 / \partial S_0 = 1 / (S_0 \sigma \sqrt{T})$. | ||
|
||
Delta of a European binary put option is $\text{Delta}_\text{Put} = - \text{Delta}_\text{Call}$. | ||
|
||
|
||
\section*{Gamma} | ||
|
||
|
||
Gamma of the European binary option is given by | ||
\begin{align} | ||
\text{Gamma} | ||
= \frac{N^{\prime\prime}(d_2)}{S_0^2 \sigma^2 T} | ||
- \frac{N^{\prime}(d_2)}{S_0^2 \sigma \sqrt{T}} | ||
= - \frac{N^{\prime}(d_2)}{S_0^2 \sigma \sqrt{T}} | ||
\br{\frac{d_2}{\sigma \sqrt{T}} + 1} , | ||
\label{eq:gamma} | ||
\end{align} | ||
where we used a relation $N^{\prime\prime}(x) = - x N^\prime(x)$ to show the second equality. | ||
|
||
Gamma of a European binary put option is $\text{Gamma}_\text{Put} = - \text{Gamma}_\text{Call}$. | ||
|
||
|
||
\end{document} |
Oops, something went wrong.