Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add condinst ut & update docs #2481

Merged
merged 1 commit into from
Oct 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/en/04-supported-codebases/mmdet.md
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,7 @@ Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Inter
| [Swin Transformer](https://github.com/open-mmlab/mmdetection/tree/main/configs/swin) | Instance Segmentation | Y | Y | N | N | Y |
| [SOLO](https://github.com/open-mmlab/mmdetection/tree/main/configs/solo) | Instance Segmentation | Y | N | N | N | Y |
| [SOLOv2](https://github.com/open-mmlab/mmdetection/tree/main/configs/solov2) | Instance Segmentation | Y | N | N | N | Y |
| [CondInst](https://github.com/open-mmlab/mmdetection/tree/main/configs/condinst) | Instance Segmentation | Y | Y | N | N | N |
| [Panoptic FPN](https://github.com/open-mmlab/mmdetection/tree/main/configs/panoptic_fpn) | Panoptic Segmentation | Y | Y | N | N | N |
| [MaskFormer](https://github.com/open-mmlab/mmdetection/tree/main/configs/maskformer) | Panoptic Segmentation | Y | Y | N | N | N |
| [Mask2Former](https://github.com/open-mmlab/mmdetection/tree/main/configs/mask2former)[\*](#mask2former) | Panoptic Segmentation | Y | Y | N | N | N |
Expand Down
2 changes: 2 additions & 0 deletions docs/zh_cn/04-supported-codebases/mmdet.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
- [后端模型推理](#后端模型推理)
- [SDK 模型推理](#sdk-模型推理)
- [模型支持列表](#模型支持列表)
- [注意事项](#注意事项)

______________________________________________________________________

Expand Down Expand Up @@ -220,6 +221,7 @@ cv2.imwrite('output_detection.png', img)
| [Swin Transformer](https://github.com/open-mmlab/mmdetection/tree/main/configs/swin) | Instance Segmentation | Y | Y | N | N | Y |
| [SOLO](https://github.com/open-mmlab/mmdetection/tree/main/configs/solo) | Instance Segmentation | Y | N | N | N | Y |
| [SOLOv2](https://github.com/open-mmlab/mmdetection/tree/main/configs/solov2) | Instance Segmentation | Y | N | N | N | Y |
| [CondInst](https://github.com/open-mmlab/mmdetection/tree/main/configs/condinst) | Instance Segmentation | Y | Y | N | N | N |
| [Panoptic FPN](https://github.com/open-mmlab/mmdetection/tree/main/configs/panoptic_fpn) | Panoptic Segmentation | Y | Y | N | N | N |
| [MaskFormer](https://github.com/open-mmlab/mmdetection/tree/main/configs/maskformer) | Panoptic Segmentation | Y | Y | N | N | N |
| [Mask2Former](https://github.com/open-mmlab/mmdetection/tree/main/configs/mask2former)[\*](#mask2former) | Panoptic Segmentation | Y | Y | N | N | N |
Expand Down
218 changes: 218 additions & 0 deletions tests/test_codebase/test_mmdet/test_mmdet_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -2364,3 +2364,221 @@ def test_solov2_head_predict_by_feat(backend_type):
atol=1e-05)
else:
assert rewrite_outputs is not None


def get_condinst_bbox_head():
"""condinst Bbox Head Config."""
test_cfg = Config(
dict(
mask_thr=0.5,
max_per_img=100,
min_bbox_size=0,
nms=dict(iou_threshold=0.6, type='nms'),
nms_pre=1000,
score_thr=0.05))
from mmdet.models.dense_heads import CondInstBboxHead
model = CondInstBboxHead(
center_sampling=True,
centerness_on_reg=True,
conv_bias=True,
dcn_on_last_conv=False,
feat_channels=256,
in_channels=256,
loss_bbox=dict(loss_weight=1.0, type='GIoULoss'),
loss_centerness=dict(
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True),
loss_cls=dict(
alpha=0.25,
gamma=2.0,
loss_weight=1.0,
type='FocalLoss',
use_sigmoid=True),
norm_on_bbox=True,
num_classes=80,
num_params=169,
stacked_convs=4,
strides=[
8,
16,
32,
64,
128,
],
test_cfg=test_cfg,
)

model.requires_grad_(False)
return model


@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
def test_condinst_bbox_head_predict_by_feat(backend_type):
"""Test predict_by_feat rewrite of condinst bbox head."""
check_backend(backend_type)
condinst_bbox_head = get_condinst_bbox_head()
condinst_bbox_head.cpu().eval()
s = 128
batch_img_metas = [{
'scale_factor': np.ones(4),
'pad_shape': (s, s, 3),
'img_shape': (s, s, 3)
}]

output_names = ['dets', 'labels', 'param_preds', 'points', 'strides']
deploy_cfg = Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(output_names=output_names, input_shape=None),
codebase_config=dict(
type='mmdet',
task='ObjectDetection',
post_processing=dict(
score_threshold=0.05,
confidence_threshold=0.005,
iou_threshold=0.5,
max_output_boxes_per_class=200,
pre_top_k=5000,
keep_top_k=100,
background_label_id=-1,
export_postprocess_mask=False))))

seed_everything(1234)
cls_scores = [
torch.rand(1, condinst_bbox_head.num_classes, pow(2, i), pow(2, i))
for i in range(5, 0, -1)
]
seed_everything(5678)
bbox_preds = [
torch.rand(1, 4, pow(2, i), pow(2, i)) for i in range(5, 0, -1)
]
seed_everything(9101)
score_factors = [
torch.rand(1, 1, pow(2, i), pow(2, i)) for i in range(5, 0, -1)
]
seed_everything(1121)
param_preds = [
torch.rand(1, condinst_bbox_head.num_params, pow(2, i), pow(2, i))
for i in range(5, 0, -1)
]

# to get outputs of onnx model after rewrite
wrapped_model = WrapModel(
condinst_bbox_head, 'predict_by_feat', batch_img_metas=batch_img_metas)
rewrite_inputs = {
'cls_scores': cls_scores,
'bbox_preds': bbox_preds,
'score_factors': score_factors,
'param_preds': param_preds,
}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)

if is_backend_output:
dets = rewrite_outputs[0]
labels = rewrite_outputs[1]
param_preds = rewrite_outputs[2]
points = rewrite_outputs[3]
strides = rewrite_outputs[4]
assert dets.shape[-1] == 5
assert labels is not None
assert param_preds.shape[-1] == condinst_bbox_head.num_params
assert points.shape[-1] == 2
assert strides is not None
else:
assert rewrite_outputs is not None


def get_condinst_mask_head():
"""condinst Mask Head Config."""
test_cfg = Config(
dict(
mask_thr=0.5,
max_per_img=100,
min_bbox_size=0,
nms=dict(iou_threshold=0.6, type='nms'),
nms_pre=1000,
score_thr=0.05))
from mmdet.models.dense_heads import CondInstMaskHead
model = CondInstMaskHead(
mask_feature_head=dict(
end_level=2,
feat_channels=128,
in_channels=256,
mask_stride=8,
norm_cfg=dict(requires_grad=True, type='BN'),
num_stacked_convs=4,
out_channels=8,
start_level=0),
num_layers=3,
feat_channels=8,
mask_out_stride=4,
size_of_interest=8,
max_masks_to_train=300,
loss_mask=dict(
activate=True,
eps=5e-06,
loss_weight=1.0,
type='DiceLoss',
use_sigmoid=True),
test_cfg=test_cfg,
)

model.requires_grad_(False)
return model


@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
def test_condinst_mask_head_forward(backend_type):
"""Test predict_by_feat rewrite of condinst mask head."""
check_backend(backend_type)

output_names = ['mask_preds']
deploy_cfg = Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(output_names=output_names, input_shape=None),
codebase_config=dict(type='mmdet', task='ObjectDetection')))

class TestCondInstMaskHeadModel(torch.nn.Module):

def __init__(self, condinst_mask_head):
super(TestCondInstMaskHeadModel, self).__init__()
self.mask_head = condinst_mask_head

def forward(self, x, param_preds, points, strides):
positive_infos = dict(
param_preds=param_preds, points=points, strides=strides)
return self.mask_head(x, positive_infos)

mask_head = get_condinst_mask_head()
level = mask_head.mask_feature_head.end_level - \
mask_head.mask_feature_head.start_level + 1

condinst_mask_head = TestCondInstMaskHeadModel(mask_head)
condinst_mask_head.cpu().eval()

seed_everything(1234)
x = [torch.rand(1, 256, pow(2, i), pow(2, i)) for i in range(level, 0, -1)]
seed_everything(5678)
param_preds = torch.rand(1, 100, 169)
seed_everything(9101)
points = torch.rand(1, 100, 2)
seed_everything(1121)
strides = torch.rand(1, 100)

# to get outputs of onnx model after rewrite
wrapped_model = WrapModel(condinst_mask_head, 'forward')
rewrite_inputs = {
'x': x,
'param_preds': param_preds,
'points': points,
'strides': strides
}
rewrite_outputs, _ = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)

assert rewrite_outputs is not None
Loading