Skip to content

Commit

Permalink
bump version to v1.2.0 (#2223)
Browse files Browse the repository at this point in the history
  • Loading branch information
RunningLeon authored Jun 30, 2023
1 parent df0bf8f commit 6cd29e2
Show file tree
Hide file tree
Showing 17 changed files with 54 additions and 54 deletions.
2 changes: 1 addition & 1 deletion CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ if (NOT CMAKE_BUILD_TYPE)
endif ()

cmake_minimum_required(VERSION 3.14)
project(MMDeploy VERSION 1.1.0)
project(MMDeploy VERSION 1.2.0)

set(CMAKE_CXX_STANDARD 17)

Expand Down
6 changes: 3 additions & 3 deletions csrc/mmdeploy/apis/csharp/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,14 +33,14 @@ There are two methods to build the nuget package.

(*option 1*) Use the command.

If your environment is well prepared, you can just go to the `csrc\apis\csharp` folder, open a terminal and type the following command, the nupkg will be built in `csrc\apis\csharp\MMDeploy\bin\Release\MMDeployCSharp.1.1.0.nupkg`.
If your environment is well prepared, you can just go to the `csrc\apis\csharp` folder, open a terminal and type the following command, the nupkg will be built in `csrc\apis\csharp\MMDeploy\bin\Release\MMDeployCSharp.1.2.0.nupkg`.

```shell
dotnet build --configuration Release -p:Version=1.1.0
dotnet build --configuration Release -p:Version=1.2.0
```

(*option 2*) Open MMDeploy.sln && Build.

You can set the package-version through `Properties -> Package Version`. The default version is 1.1.0 if you don't set it.
You can set the package-version through `Properties -> Package Version`. The default version is 1.2.0 if you don't set it.

If you encounter missing dependencies, follow the instructions for MSVC.
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="MMDeployCSharp" Version="1.2.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.Extensions" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
Expand Down
2 changes: 1 addition & 1 deletion demo/csharp/image_restorer/image_restorer.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="MMDeployCSharp" Version="1.2.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>
Expand Down
2 changes: 1 addition & 1 deletion demo/csharp/image_segmentation/image_segmentation.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="MMDeployCSharp" Version="1.2.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>
Expand Down
2 changes: 1 addition & 1 deletion demo/csharp/object_detection/object_detection.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="MMDeployCSharp" Version="1.2.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>
Expand Down
2 changes: 1 addition & 1 deletion demo/csharp/ocr_detection/ocr_detection.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="MMDeployCSharp" Version="1.2.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>
Expand Down
2 changes: 1 addition & 1 deletion demo/csharp/ocr_recognition/ocr_recognition.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="MMDeployCSharp" Version="1.2.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>
Expand Down
2 changes: 1 addition & 1 deletion demo/csharp/pose_detection/pose_detection.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="MMDeployCSharp" Version="1.2.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>
Expand Down
2 changes: 1 addition & 1 deletion docs/en/01-how-to-build/build_from_docker.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ This document guides how to install mmdeploy with [Docker](https://docs.docker.c
## Get prebuilt docker images

MMDeploy provides prebuilt docker images for the convenience of its users on [Docker Hub](https://hub.docker.com/r/openmmlab/mmdeploy). The docker images are built on
the latest and released versions. For instance, the image with tag `openmmlab/mmdeploy:ubuntu20.04-cuda11.3-mmdeploy` is built on the latest mmdeploy and the image with tag `openmmlab/mmdeploy:ubuntu20.04-cuda11.3-mmdeploy1.1.0` is for `mmdeploy==1.1.0`.
the latest and released versions. For instance, the image with tag `openmmlab/mmdeploy:ubuntu20.04-cuda11.3-mmdeploy` is built on the latest mmdeploy and the image with tag `openmmlab/mmdeploy:ubuntu20.04-cuda11.3-mmdeploy1.2.0` is for `mmdeploy==1.2.0`.
The specifications of the Docker Image are shown below.

| Item | Version |
Expand Down
26 changes: 13 additions & 13 deletions docs/en/02-how-to-run/prebuilt_package_windows.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@

______________________________________________________________________

This tutorial takes `mmdeploy-1.1.0-windows-amd64.zip` and `mmdeploy-1.1.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference.
This tutorial takes `mmdeploy-1.2.0-windows-amd64.zip` and `mmdeploy-1.2.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference.

The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.

Expand Down Expand Up @@ -81,8 +81,8 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
```bash
pip install mmdeploy==1.1.0
pip install mmdeploy-runtime==1.1.0
pip install mmdeploy==1.2.0
pip install mmdeploy-runtime==1.2.0
```

:point_right: If you have installed it before, please uninstall it first.
Expand All @@ -100,7 +100,7 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`.

8. Download SDK C/cpp Library mmdeploy-1.1.0-windows-amd64.zip
8. Download SDK C/cpp Library mmdeploy-1.2.0-windows-amd64.zip

### TensorRT

Expand All @@ -109,8 +109,8 @@ In order to use `TensorRT` backend, you should also do the following steps.
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).

```bash
pip install mmdeploy==1.1.0
pip install mmdeploy-runtime-gpu==1.1.0
pip install mmdeploy==1.2.0
pip install mmdeploy-runtime-gpu==1.2.0
```

:point_right: If you have installed it before, please uninstall it first.
Expand All @@ -129,7 +129,7 @@ In order to use `TensorRT` backend, you should also do the following steps.
7. Install pycuda by `pip install pycuda`
8. Download SDK C/cpp Library mmdeploy-1.1.0-windows-amd64-cuda11.3.zip
8. Download SDK C/cpp Library mmdeploy-1.2.0-windows-amd64-cuda11.3.zip
## Model Convert
Expand All @@ -141,7 +141,7 @@ After preparation work, the structure of the current working directory should be
```
..
|-- mmdeploy-1.1.0-windows-amd64
|-- mmdeploy-1.2.0-windows-amd64
|-- mmpretrain
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -189,7 +189,7 @@ After installation of mmdeploy-tensorrt prebuilt package, the structure of the c
```
..
|-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmdeploy-1.2.0-windows-amd64-cuda11.3
|-- mmpretrain
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -252,8 +252,8 @@ The structure of current working directory:
```
.
|-- mmdeploy-1.1.0-windows-amd64
|-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmdeploy-1.2.0-windows-amd64
|-- mmdeploy-1.2.0-windows-amd64-cuda11.3
|-- mmpretrain
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -324,7 +324,7 @@ The following describes how to use the SDK's C API for inference
It is recommended to use `CMD` here.
Under `mmdeploy-1.1.0-windows-amd64\\example\\cpp\\build\\Release` directory:
Under `mmdeploy-1.2.0-windows-amd64\\example\\cpp\\build\\Release` directory:
```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG
Expand All @@ -344,7 +344,7 @@ The following describes how to use the SDK's C API for inference
It is recommended to use `CMD` here.
Under `mmdeploy-1.1.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
Under `mmdeploy-1.2.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG
Expand Down
12 changes: 6 additions & 6 deletions docs/en/get_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,14 +118,14 @@ Take the latest precompiled package as example, you can install it as follows:

```shell
# 1. install MMDeploy model converter
pip install mmdeploy==1.1.0
pip install mmdeploy==1.2.0

# 2. install MMDeploy sdk inference
# you can install one to install according whether you need gpu inference
# 2.1 support onnxruntime
pip install mmdeploy-runtime==1.1.0
pip install mmdeploy-runtime==1.2.0
# 2.2 support onnxruntime-gpu, tensorrt
pip install mmdeploy-runtime-gpu==1.1.0
pip install mmdeploy-runtime-gpu==1.2.0

# 3. install inference engine
# 3.1 install TensorRT
Expand Down Expand Up @@ -230,9 +230,9 @@ result = inference_model(
You can directly run MMDeploy demo programs in the precompiled package to get inference results.

```shell
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.1.0/mmdeploy-1.1.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.1.0-linux-x86_64-cuda11.3
cd mmdeploy-1.1.0-linux-x86_64-cuda11.3
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.2.0/mmdeploy-1.2.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.2.0-linux-x86_64-cuda11.3
cd mmdeploy-1.2.0-linux-x86_64-cuda11.3
# run python demo
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# run C/C++ demo
Expand Down
4 changes: 2 additions & 2 deletions docs/zh_cn/01-how-to-build/build_from_docker.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@

## 获取镜像

为了方便用户,mmdeploy在[Docker Hub](https://hub.docker.com/r/openmmlab/mmdeploy)上提供了多个版本的镜像,例如对于`mmdeploy==1.1.0`
其镜像标签为`openmmlab/mmdeploy:ubuntu20.04-cuda11.3-mmdeploy1.1.0`,而最新的镜像标签为`openmmlab/mmdeploy:ubuntu20.04-cuda11.3-mmdeploy`
为了方便用户,mmdeploy在[Docker Hub](https://hub.docker.com/r/openmmlab/mmdeploy)上提供了多个版本的镜像,例如对于`mmdeploy==1.2.0`
其镜像标签为`openmmlab/mmdeploy:ubuntu20.04-cuda11.3-mmdeploy1.2.0`,而最新的镜像标签为`openmmlab/mmdeploy:ubuntu20.04-cuda11.3-mmdeploy`
镜像相关规格信息如下表所示:

| Item | Version |
Expand Down
26 changes: 13 additions & 13 deletions docs/zh_cn/02-how-to-run/prebuilt_package_windows.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ ______________________________________________________________________

目前,`MMDeploy``Windows`平台下提供`cpu`以及`cuda`两种Device的预编译包,其中`cpu`版支持使用onnxruntime cpu进行推理,`cuda`版支持使用onnxruntime-gpu以及tensorrt进行推理,可以从[Releases](https://github.com/open-mmlab/mmdeploy/releases)获取。。

本篇教程以`mmdeploy-1.1.0-windows-amd64.zip``mmdeploy-1.1.0-windows-amd64-cuda11.3.zip`为例,展示预编译包的使用方法。
本篇教程以`mmdeploy-1.2.0-windows-amd64.zip``mmdeploy-1.2.0-windows-amd64-cuda11.3.zip`为例,展示预编译包的使用方法。

为了方便使用者快速上手,本教程以分类模型(mmpretrain)为例,展示两种预编译包的使用方法。

Expand Down Expand Up @@ -89,8 +89,8 @@ ______________________________________________________________________
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`(模型推理Python API)的预编译包
```bash
pip install mmdeploy==1.1.0
pip install mmdeploy-runtime==1.1.0
pip install mmdeploy==1.2.0
pip install mmdeploy-runtime==1.2.0
```

:point_right: 如果之前安装过,需要先卸载后再安装。
Expand All @@ -108,7 +108,7 @@ ______________________________________________________________________
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
:exclamation: 重启powershell让环境变量生效,可以通过 echo $env:PATH 来检查是否设置成功。

8. 下载 SDK C/cpp Library mmdeploy-1.1.0-windows-amd64.zip
8. 下载 SDK C/cpp Library mmdeploy-1.2.0-windows-amd64.zip

### TensorRT

Expand All @@ -117,8 +117,8 @@ ______________________________________________________________________
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`(模型推理Python API)的预编译包

```bash
pip install mmdeploy==1.1.0
pip install mmdeploy-runtime-gpu==1.1.0
pip install mmdeploy==1.2.0
pip install mmdeploy-runtime-gpu==1.2.0
```

:point_right: 如果之前安装过,需要先卸载后再安装
Expand All @@ -137,7 +137,7 @@ ______________________________________________________________________

7. 安装pycuda `pip install pycuda`

8. 下载 SDK C/cpp Library mmdeploy-1.1.0-windows-amd64-cuda11.3.zip
8. 下载 SDK C/cpp Library mmdeploy-1.2.0-windows-amd64-cuda11.3.zip

## 模型转换

Expand All @@ -149,7 +149,7 @@ ______________________________________________________________________

```
..
|-- mmdeploy-1.1.0-windows-amd64
|-- mmdeploy-1.2.0-windows-amd64
|-- mmpretrain
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -197,7 +197,7 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

```
..
|-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmdeploy-1.2.0-windows-amd64-cuda11.3
|-- mmpretrain
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -260,8 +260,8 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

```
.
|-- mmdeploy-1.1.0-windows-amd64
|-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmdeploy-1.2.0-windows-amd64
|-- mmdeploy-1.2.0-windows-amd64-cuda11.3
|-- mmpretrain
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -340,7 +340,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet

这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗

在mmdeploy-1.1.0-windows-amd64\\example\\cpp\\build\\Release目录下:
在mmdeploy-1.2.0-windows-amd64\\example\\cpp\\build\\Release目录下:

```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG
Expand All @@ -360,7 +360,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet

这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗

在mmdeploy-1.1.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release目录下:
在mmdeploy-1.2.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release目录下:

```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG
Expand Down
12 changes: 6 additions & 6 deletions docs/zh_cn/get_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -113,14 +113,14 @@ mim install "mmcv>=2.0.0rc2"

```shell
# 1. 安装 MMDeploy 模型转换工具(含trt/ort自定义算子)
pip install mmdeploy==1.1.0
pip install mmdeploy==1.2.0

# 2. 安装 MMDeploy SDK推理工具
# 根据是否需要GPU推理可任选其一进行下载安装
# 2.1 支持 onnxruntime 推理
pip install mmdeploy-runtime==1.1.0
pip install mmdeploy-runtime==1.2.0
# 2.2 支持 onnxruntime-gpu tensorrt 推理
pip install mmdeploy-runtime-gpu==1.1.0
pip install mmdeploy-runtime-gpu==1.2.0

# 3. 安装推理引擎
# 3.1 安装推理引擎 TensorRT
Expand Down Expand Up @@ -223,10 +223,10 @@ result = inference_model(
你可以直接运行预编译包中的 demo 程序,输入 SDK Model 和图像,进行推理,并查看推理结果。

```shell
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.1.0/mmdeploy-1.1.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.1.0-linux-x86_64-cuda11.3
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.2.0/mmdeploy-1.2.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.2.0-linux-x86_64-cuda11.3

cd mmdeploy-1.1.0-linux-x86_64-cuda11.3
cd mmdeploy-1.2.0-linux-x86_64-cuda11.3
# 运行 python demo
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# 运行 C/C++ demo
Expand Down
2 changes: 1 addition & 1 deletion mmdeploy/version.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple

__version__ = '1.1.0'
__version__ = '1.2.0'
short_version = __version__


Expand Down
2 changes: 1 addition & 1 deletion tools/package_tools/packaging/mmdeploy_runtime/version.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
# Copyright (c) OpenMMLab. All rights reserved.
__version__ = '1.1.0'
__version__ = '1.2.0'

0 comments on commit 6cd29e2

Please sign in to comment.