Skip to content

Commit

Permalink
bump version to v1.0.0rc1 (#1595)
Browse files Browse the repository at this point in the history
  • Loading branch information
lvhan028 authored Dec 30, 2022
1 parent deaefac commit 09f1952
Show file tree
Hide file tree
Showing 7 changed files with 63 additions and 63 deletions.
2 changes: 1 addition & 1 deletion CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ endif ()
message(STATUS "CMAKE_INSTALL_PREFIX: ${CMAKE_INSTALL_PREFIX}")

cmake_minimum_required(VERSION 3.14)
project(MMDeploy VERSION 0.10.0)
project(MMDeploy VERSION 0.12.0)

set(CMAKE_CXX_STANDARD 17)

Expand Down
38 changes: 19 additions & 19 deletions docs/en/02-how-to-run/prebuilt_package_windows.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@

______________________________________________________________________

This tutorial takes `mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1.zip` and `mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip` as examples to show how to use the prebuilt packages.
This tutorial takes `mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1.zip` and `mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip` as examples to show how to use the prebuilt packages.

The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.

Expand Down Expand Up @@ -80,9 +80,9 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
5. Install `mmdeploy` (Model Converter) and `mmdeploy_python` (SDK Python API).
```bash
# download mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1.zip
pip install .\mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-1.0.0rc0-py38-none-win_amd64.whl
pip install .\mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-1.0.0rc0-cp38-none-win_amd64.whl
# download mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1.zip
pip install .\mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-1.0.0rc1-py38-none-win_amd64.whl
pip install .\mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-1.0.0rc1-cp38-none-win_amd64.whl
```

:point_right: If you have installed it before, please uninstall it first.
Expand All @@ -107,9 +107,9 @@ In order to use `TensorRT` backend, you should also do the following steps.
5. Install `mmdeploy` (Model Converter) and `mmdeploy_python` (SDK Python API).

```bash
# download mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
pip install .\mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-1.0.0rc0-py38-none-win_amd64.whl
pip install .\mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-1.0.0rc0-cp38-none-win_amd64.whl
# download mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
pip install .\mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-1.0.0rc1-py38-none-win_amd64.whl
pip install .\mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-1.0.0rc1-cp38-none-win_amd64.whl
```

:point_right: If you have installed it before, please uninstall it first.
Expand Down Expand Up @@ -138,7 +138,7 @@ After preparation work, the structure of the current working directory should be
```
..
|-- mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1
|-- mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1
|-- mmclassification
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -186,7 +186,7 @@ After installation of mmdeploy-tensorrt prebuilt package, the structure of the c
```
..
|-- mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmclassification
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -249,8 +249,8 @@ The structure of current working directory:
```
.
|-- mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1
|-- mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1
|-- mmclassification
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -311,15 +311,15 @@ The following describes how to use the SDK's C API for inference
1. Build examples
Under `mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\sdk\example` directory
Under `mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\sdk\example` directory
```
// Path should be modified according to the actual location
mkdir build
cd build
cmake ..\cpp -A x64 -T v142 `
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
-DMMDeploy_DIR=C:\workspace\mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
-DMMDeploy_DIR=C:\workspace\mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
-DONNXRUNTIME_DIR=C:\Deps\onnxruntime\onnxruntime-win-gpu-x64-1.8.1

cmake --build . --config Release
Expand All @@ -329,15 +329,15 @@ The following describes how to use the SDK's C API for inference
:point_right: The purpose is to make the exe find the relevant dll
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\sdk\bin`) to the `PATH`.
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\sdk\bin`) to the `PATH`.
If choose to copy the dynamic libraries, copy the dll in the bin directory to the same level directory of the just compiled exe (build/Release).
3. Inference:
It is recommended to use `CMD` here.
Under `mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release` directory:
Under `mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release` directory:
```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
Expand All @@ -347,15 +347,15 @@ The following describes how to use the SDK's C API for inference
1. Build examples
Under `mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example` directory
Under `mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example` directory
```
// Path should be modified according to the actual location
mkdir build
cd build
cmake ..\cpp -A x64 -T v142 `
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
-DMMDeploy_DIR=C:\workspace\mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
-DMMDeploy_DIR=C:\workspace\mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
-DTENSORRT_DIR=C:\Deps\tensorrt\TensorRT-8.2.3.0 `
-DCUDNN_DIR=C:\Deps\cudnn\8.2.1
cmake --build . --config Release
Expand All @@ -365,15 +365,15 @@ The following describes how to use the SDK's C API for inference
:point_right: The purpose is to make the exe find the relevant dll
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`) to the `PATH`.
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`) to the `PATH`.
If choose to copy the dynamic libraries, copy the dll in the bin directory to the same level directory of the just compiled exe (build/Release).
3. Inference
It is recommended to use `CMD` here.
Under `mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release` directory
Under `mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release` directory
```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG
Expand Down
22 changes: 11 additions & 11 deletions docs/en/get_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,11 +118,11 @@ Take the latest precompiled package as example, you can install it as follows:

```shell
# install MMDeploy
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0rc0/mmdeploy-1.0.0rc0-linux-x86_64-onnxruntime1.8.1.tar.gz
tar -zxvf mmdeploy-1.0.0rc0-linux-x86_64-onnxruntime1.8.1.tar.gz
cd mmdeploy-1.0.0rc0-linux-x86_64-onnxruntime1.8.1
pip install dist/mmdeploy-1.0.0rc0-py3-none-linux_x86_64.whl
pip install sdk/python/mmdeploy_python-1.0.0rc0-cp38-none-linux_x86_64.whl
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0rc1/mmdeploy-1.0.0rc1-linux-x86_64-onnxruntime1.8.1.tar.gz
tar -zxvf mmdeploy-1.0.0rc1-linux-x86_64-onnxruntime1.8.1.tar.gz
cd mmdeploy-1.0.0rc1-linux-x86_64-onnxruntime1.8.1
pip install dist/mmdeploy-1.0.0rc1-py3-none-linux_x86_64.whl
pip install sdk/python/mmdeploy_python-1.0.0rc1-cp38-none-linux_x86_64.whl
cd ..
# install inference engine: ONNX Runtime
pip install onnxruntime==1.8.1
Expand All @@ -139,11 +139,11 @@ export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH

```shell
# install MMDeploy
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0rc0/mmdeploy-1.0.0rc0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
tar -zxvf mmdeploy-1.0.0rc0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
cd mmdeploy-1.0.0rc0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
pip install dist/mmdeploy-1.0.0rc0-py3-none-linux_x86_64.whl
pip install sdk/python/mmdeploy_python-1.0.0rc0-cp38-none-linux_x86_64.whl
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0rc1/mmdeploy-1.0.0rc1-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
tar -zxvf mmdeploy-1.0.0rc1-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
cd mmdeploy-1.0.0rc1-linux-x86_64-cuda11.1-tensorrt8.2.3.0
pip install dist/mmdeploy-1.0.0rc1-py3-none-linux_x86_64.whl
pip install sdk/python/mmdeploy_python-1.0.0rc1-cp38-none-linux_x86_64.whl
cd ..
# install inference engine: TensorRT
# !!! Download TensorRT-8.2.3.0 CUDA 11.x tar package from NVIDIA, and extract it to the current directory
Expand Down Expand Up @@ -232,7 +232,7 @@ result = inference_model(
You can directly run MMDeploy demo programs in the precompiled package to get inference results.

```shell
cd mmdeploy-1.0.0rc0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
cd mmdeploy-1.0.0rc1-linux-x86_64-cuda11.1-tensorrt8.2.3.0
# run python demo
python sdk/example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# run C/C++ demo
Expand Down
38 changes: 19 additions & 19 deletions docs/zh_cn/02-how-to-run/prebuilt_package_windows.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ ______________________________________________________________________

目前,`MMDeploy``Windows`平台下提供`TensorRT`以及`ONNX Runtime`两种预编译包,可以从[Releases](https://github.com/open-mmlab/mmdeploy/releases)获取。

本篇教程以`mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1.zip``mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip`为例,展示预编译包的使用方法。
本篇教程以`mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1.zip``mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip`为例,展示预编译包的使用方法。

为了方便使用者快速上手,本教程以分类模型(mmclassification)为例,展示两种预编译包的使用方法。

Expand Down Expand Up @@ -88,9 +88,9 @@ ______________________________________________________________________
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_python`(模型推理Python API)的预编译包
```bash
# 先下载 mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1.zip
pip install .\mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-1.0.0rc0-py38-none-win_amd64.whl
pip install .\mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-1.0.0rc0-cp38-none-win_amd64.whl
# 先下载 mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1.zip
pip install .\mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-1.0.0rc1-py38-none-win_amd64.whl
pip install .\mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-1.0.0rc1-cp38-none-win_amd64.whl
```

:point_right: 如果之前安装过,需要先卸载后再安装。
Expand All @@ -115,9 +115,9 @@ ______________________________________________________________________
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_python`(模型推理Python API)的预编译包

```bash
# 先下载 mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
pip install .\mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-1.0.0rc0-py38-none-win_amd64.whl
pip install .\mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-1.0.0rc0-cp38-none-win_amd64.whl
# 先下载 mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
pip install .\mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-1.0.0rc1-py38-none-win_amd64.whl
pip install .\mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-1.0.0rc1-cp38-none-win_amd64.whl
```

:point_right: 如果之前安装过,需要先卸载后再安装
Expand Down Expand Up @@ -146,7 +146,7 @@ ______________________________________________________________________

```
..
|-- mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1
|-- mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1
|-- mmclassification
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -194,7 +194,7 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

```
..
|-- mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmclassification
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -257,8 +257,8 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

```
.
|-- mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1
|-- mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1
|-- mmclassification
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
Expand Down Expand Up @@ -327,15 +327,15 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet

1. 编译 examples

`mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\sdk\example`目录下
`mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\sdk\example`目录下

```
// 部分路径根据实际位置进行修改
mkdir build
cd build
cmake ..\cpp -A x64 -T v142 `
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
-DMMDeploy_DIR=C:\workspace\mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
-DMMDeploy_DIR=C:\workspace\mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
-DONNXRUNTIME_DIR=C:\Deps\onnxruntime\onnxruntime-win-gpu-x64-1.8.1
cmake --build . --config Release
Expand All @@ -345,15 +345,15 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet

:point_right: 目的是使exe运行时可以正确找到相关dll

若选择添加环境变量,则将`mmdeploy`的运行时库路径(`mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\sdk\bin`)添加到PATH,可参考onnxruntime的添加过程。
若选择添加环境变量,则将`mmdeploy`的运行时库路径(`mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\sdk\bin`)添加到PATH,可参考onnxruntime的添加过程。

若选择拷贝动态库,而将bin目录中的dll拷贝到刚才编译出的exe(build/Release)的同级目录下。

3. 推理:

这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗

在mmdeploy-1.0.0rc0-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release目录下:
在mmdeploy-1.0.0rc1-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release目录下:

```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
Expand All @@ -363,15 +363,15 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet

1. 编译 examples

在mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example目录下
在mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example目录下

```
// 部分路径根据所在硬盘的位置进行修改
mkdir build
cd build
cmake ..\cpp -A x64 -T v142 `
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
-DMMDeploy_DIR=C:\workspace\mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
-DMMDeploy_DIR=C:\workspace\mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
-DTENSORRT_DIR=C:\Deps\tensorrt\TensorRT-8.2.3.0 `
-DCUDNN_DIR=C:\Deps\cudnn\8.2.1
cmake --build . --config Release
Expand All @@ -381,15 +381,15 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet

:point_right: 目的是使exe运行时可以正确找到相关dll

若选择添加环境变量,则将`mmdeploy`的运行时库路径(`mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`)添加到PATH,可参考onnxruntime的添加过程。
若选择添加环境变量,则将`mmdeploy`的运行时库路径(`mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`)添加到PATH,可参考onnxruntime的添加过程。

若选择拷贝动态库,而将bin目录中的dll拷贝到刚才编译出的exe(build/Release)的同级目录下。

3. 推理

这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗

在mmdeploy-1.0.0rc0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release目录下:
在mmdeploy-1.0.0rc1-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release目录下:

```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG
Expand Down
22 changes: 11 additions & 11 deletions docs/zh_cn/get_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -113,11 +113,11 @@ mim install "mmcv>=2.0.0rc2"

```shell
# 安装 MMDeploy ONNX Runtime 自定义算子库和推理 SDK
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0rc0/mmdeploy-1.0.0rc0-linux-x86_64-onnxruntime1.8.1.tar.gz
tar -zxvf mmdeploy-1.0.0rc0-linux-x86_64-onnxruntime1.8.1.tar.gz
cd mmdeploy-1.0.0rc0-linux-x86_64-onnxruntime1.8.1
pip install dist/mmdeploy-1.0.0rc0-py3-none-linux_x86_64.whl
pip install sdk/python/mmdeploy_python-1.0.0rc0-cp38-none-linux_x86_64.whl
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0rc1/mmdeploy-1.0.0rc1-linux-x86_64-onnxruntime1.8.1.tar.gz
tar -zxvf mmdeploy-1.0.0rc1-linux-x86_64-onnxruntime1.8.1.tar.gz
cd mmdeploy-1.0.0rc1-linux-x86_64-onnxruntime1.8.1
pip install dist/mmdeploy-1.0.0rc1-py3-none-linux_x86_64.whl
pip install sdk/python/mmdeploy_python-1.0.0rc1-cp38-none-linux_x86_64.whl
cd ..
# 安装推理引擎 ONNX Runtime
pip install onnxruntime==1.8.1
Expand All @@ -134,11 +134,11 @@ export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH

```shell
# 安装 MMDeploy TensorRT 自定义算子库和推理 SDK
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0rc0/mmdeploy-1.0.0rc0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
tar -zxvf mmdeploy-1.0.0rc0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
cd mmdeploy-1.0.0rc0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
pip install dist/mmdeploy-1.0.0rc0-py3-none-linux_x86_64.whl
pip install sdk/python/mmdeploy_python-1.0.0rc0-cp38-none-linux_x86_64.whl
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0rc1/mmdeploy-1.0.0rc1-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
tar -zxvf mmdeploy-1.0.0rc1-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
cd mmdeploy-1.0.0rc1-linux-x86_64-cuda11.1-tensorrt8.2.3.0
pip install dist/mmdeploy-1.0.0rc1-py3-none-linux_x86_64.whl
pip install sdk/python/mmdeploy_python-1.0.0rc1-cp38-none-linux_x86_64.whl
cd ..
# 安装推理引擎 TensorRT
# !!! 从 NVIDIA 官网下载 TensorRT-8.2.3.0 CUDA 11.x 安装包并解压到当前目录
Expand Down Expand Up @@ -226,7 +226,7 @@ result = inference_model(
你可以直接运行预编译包中的 demo 程序,输入 SDK Model 和图像,进行推理,并查看推理结果。

```shell
cd mmdeploy-1.0.0rc0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
cd mmdeploy-1.0.0rc1-linux-x86_64-cuda11.1-tensorrt8.2.3.0
# 运行 python demo
python sdk/example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# 运行 C/C++ demo
Expand Down
2 changes: 1 addition & 1 deletion mmdeploy/version.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple

__version__ = '1.0.0rc0'
__version__ = '1.0.0rc1'
short_version = __version__


Expand Down
2 changes: 1 addition & 1 deletion tools/package_tools/packaging/mmdeploy_python/version.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
# Copyright (c) OpenMMLab. All rights reserved.
__version__ = '1.0.0rc0'
__version__ = '1.0.0rc1'

0 comments on commit 09f1952

Please sign in to comment.