Skip to content

Commit

Permalink
fix compass arena (#854)
Browse files Browse the repository at this point in the history
  • Loading branch information
bittersweet1999 authored Jan 30, 2024
1 parent 4f78388 commit 5c6dc90
Show file tree
Hide file tree
Showing 4 changed files with 81 additions and 64 deletions.
19 changes: 2 additions & 17 deletions configs/datasets/subjective/compassarena/compassarena_compare.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,19 +88,6 @@

reason_prompt = math_prompt

qa_prompt = """
请根据提供的 评分要求,用户问题 以及 相应的两个回答(回答1,回答2),判断两个回答中哪一个更好。
评分要求(重要性依次递减):
1. 好的回答必须首先具有事实正确性,即除了想象的内容外,所引用或阐述的各种信息都是真实正确的
2. 好的回答必须具有逻辑连贯性,围绕一个中心进行回答,且前后连贯,逻辑没有问题
3. 在都准确答对问题的前提下,更好的回答能进行额外补充,且补充的内容准确无误
[用户问题]
{question}
""" + base_prompt



creation_prompt = """
请根据提供的 评分要求,用户问题 以及 相应的两个回答(回答1,回答2),判断两个回答中哪一个更好。
评分要求(重要性依次递减):
Expand All @@ -112,11 +99,9 @@
{question}
""" + base_prompt

sub_map = {"knowledge": knowledge_prompt, "language": language_prompt, "math_v2": math_prompt, "reason_v2": reason_prompt, "creationv2_zh": creation_prompt}

subjective_all_sets = ["knowledge", "language", "math", "reason", "qa", "creationv2_zh"]
prompt_all_sets = [knowledge_prompt, language_prompt, math_prompt, reason_prompt, qa_prompt, creation_prompt]

for _name,_prompt in zip(subjective_all_sets, prompt_all_sets):
for _name, _prompt in sub_map.items():
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
Expand Down
13 changes: 7 additions & 6 deletions configs/eval_subjective_compassarena.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
from mmengine.config import read_base
with read_base():
from .models.chatglm.hf_chatglm3_6b_32k import models as chatglm3_6b_32k_model
from .models.yi.hf_yi_6b_chat import models as yi_6b_chat_model
from .datasets.subjective.compassarena.compassarena_compare import subjective_datasets

from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
Expand All @@ -19,7 +18,7 @@

infer = dict(
#partitioner=dict(type=NaivePartitioner),
partitioner=dict(type=SizePartitioner, max_task_size=10000),
partitioner=dict(type=SizePartitioner, strategy='split', max_task_size=10000),
runner=dict(
type=SlurmSequentialRunner,
partition='llm_dev2',
Expand Down Expand Up @@ -47,12 +46,12 @@
retry=20,
temperature = 1
)
models = [*chatglm3_6b_32k_model, *yi_6b_chat_model]
models = [*chatglm3_6b_32k_model]
datasets = [*subjective_datasets]



work_dir = 'outputs/compass_arena/'
work_dir = 'outputs/compass_arena_debug/'

# -------------Inferen Stage ----------------------------------------

Expand All @@ -68,6 +67,7 @@
retry=20,
temperature = 0
)

## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
Expand All @@ -76,7 +76,7 @@
max_task_size=10000,
mode='m2n',
base_models = [gpt4],
compare_models = [*chatglm3_6b_32k_model, *yi_6b_chat_model, ]
compare_models = [*chatglm3_6b_32k_model]
),
runner=dict(
type=SlurmSequentialRunner,
Expand All @@ -91,5 +91,6 @@


summarizer = dict(
type=CompassArenaSummarizer
type=CompassArenaSummarizer,
summary_type='half_add'
)
106 changes: 68 additions & 38 deletions opencompass/summarizers/subjective/compass_arena.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def check_position_bias(judged_answers, references, banned_choice=['C']):
position_bias_flag = 0
position_bias_dict = {}
for judge, ref in zip(judged_answers, references):
question = ref['others']['question']
question = ref['question']
question_hash = hash(question)
if question_hash not in position_bias_dict:
position_bias_dict[question_hash] = {
Expand All @@ -58,7 +58,11 @@ class CompassArenaSummarizer:
It's expected to be filled out at runtime.
"""

def __init__(self, config: ConfigDict, judge_type='general') -> None:
def __init__(self,
config: ConfigDict,
judge_type='general',
check_pos_bias=True,
summary_type='single') -> None:
self.tasks = []
self.cfg = config
self.base_models = self.cfg['eval']['partitioner']['base_models']
Expand All @@ -70,10 +74,13 @@ def __init__(self, config: ConfigDict, judge_type='general') -> None:
'general': post_process_compass_arena,
}
self.judge_function = self.judge_map[self.judge_type]
self.check_pos_bias = check_pos_bias
self.summary_type = summary_type

def summarize(self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
check_pos_bias=True):
def summarize(
self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
Expand All @@ -88,25 +95,25 @@ def summarize(self,
product(self.base_models, self.compare_models))
unique_combinations = remove_duplicate_pairs(
[combo for combo in model_combinations if combo[0] != combo[1]])
judge_model = self.judge_abbr
fout_list = []
for model_pair in unique_combinations:
model1, model2, judge_model = model_pair[0]['abbr'], model_pair[1][
'abbr'], self.judge_abbr
subdir = model1 + '_' + model2 + '_judged-by--' + self.judge_abbr
subdir_path = os.path.join(results_folder, subdir)
if os.path.isdir(subdir_path):
for dataset in dataset_cfgs:
dataset_abbr = dataset_abbr_from_cfg(dataset)
fout = osp.join(
output_dir, 'judged-by--' + judge_model + '-' +
dataset_abbr + '-report.csv')
fout_list.append(fout)
for dataset in dataset_cfgs:
dataset_abbr = dataset_abbr_from_cfg(dataset)
fout = osp.join(
output_dir, 'judged-by--' + judge_model + '-' + dataset_abbr +
'-report.csv')
fout_list.append(fout)
for model_pair in unique_combinations:
model1, model2, = model_pair[0]['abbr'], model_pair[1]['abbr'],
subdir = model1 + '_' + model2 + '_judged-by--' + judge_model
subdir_path = os.path.join(results_folder, subdir)
if os.path.isdir(subdir_path):
judged_answers, references = get_judgeanswer_and_reference(
dataset,
subdir_path,
self.judge_function,
)
if check_pos_bias:
if self.check_pos_bias:
bias_num = check_position_bias(judged_answers,
references)
else:
Expand All @@ -117,24 +124,47 @@ def summarize(self,
'answer2']
for prediction, reference in zip(judged_answers,
references):
if dataset_abbr == 'qa':
reference['capability'] = 'QA'
categories['total'] += 1
categories[reference['capability']] += 1
if prediction == 'A':
if reference['answer1'] == model1:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
else:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
elif prediction == 'B':
if reference['answer1'] == model1:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
if self.summary_type == 'single':
if prediction == 'A':
categories['total'] += 1
categories[reference['capability']] += 1
if reference['answer1'] == model1:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
else:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
elif prediction == 'B':
categories['total'] += 1
categories[reference['capability']] += 1
if reference['answer1'] == model1:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
elif self.summary_type == 'half_add':
categories['total'] += 1
categories[reference['capability']] += 1
if prediction == 'A':
if reference['answer1'] == model1:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
else:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
elif prediction == 'B':
if reference['answer1'] == model1:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
elif prediction == 'C':
win_model1[reference['capability']] += 0.5
win_model1['total'] += 0.5
win_model2[reference['capability']] += 0.5
win_model2['total'] += 0.5
for capability in categories:
if capability not in win_model1:
win_model1[capability] = 0.0
Expand Down Expand Up @@ -166,8 +196,8 @@ def summarize(self,
writer.writerow(
[row] +
[scores[row][column] for column in columns])
else:
print(subdir_path + ' is not exist! please check!')
else:
print(subdir_path + ' is not exist! please check!')
for fout in fout_list:
with open(fout, 'r') as f:
x = from_csv(f)
Expand Down
7 changes: 4 additions & 3 deletions opencompass/summarizers/subjective/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,10 @@ def get_judgeanswer_and_reference(dataset, subdir_path, post_process):
if processed_judge is not None:
judged_answers.append(processed_judge)
references.append(v['gold'])
print(
f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements.'
)
if len(judged_answers) != len(result):
print(
f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements, please check!'
)
if len(judged_answers) == 0:
print('*' * 100)
print(
Expand Down

0 comments on commit 5c6dc90

Please sign in to comment.