-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ab8fd20
commit e31b64a
Showing
1 changed file
with
54 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import unittest | ||
import numpy as np | ||
import pandas as pd | ||
from pyphenopop.mixpopid import mixture_id | ||
import os | ||
|
||
|
||
class TestMixtureId(unittest.TestCase): | ||
|
||
def setUp(self): | ||
# Create a temporary CSV file with mock data | ||
self.data_file = 'test_data.csv' | ||
data = np.random.rand(10*2, 3) # 10 timepoints, 3 concentrations | ||
pd.DataFrame(data).to_csv(self.data_file, header=False, index=False) | ||
|
||
self.max_subpop = 3 | ||
self.timepoints = np.linspace(0, 48, 10) # 10 timepoints from 0 to 48 hours | ||
self.concentrations = np.linspace(0.01, 10, 3) # 3 concentrations from 0.01 to 10 | ||
self.num_replicates = 2 | ||
self.model = 'expo' | ||
self.bounds_model = {'alpha': (0.0, 0.1), 'b': (0.0, 1.0), 'E': (1e-06, 15), 'n': (0.01, 10)} | ||
self.bounds_sigma_high = (1e-05, 10000.0) | ||
self.bounds_sigma_low = (1e-05, 5000.0) | ||
self.optimizer_options = {'method': 'L-BFGS-B', 'options': {'disp': False, 'ftol': 1e-12}} | ||
self.num_optim = 5 | ||
self.selection_method = 'BIC' | ||
|
||
def test_mixture_id(self): | ||
results = mixture_id( | ||
self.max_subpop, | ||
self.data_file, | ||
self.timepoints, | ||
self.concentrations, | ||
self.num_replicates, | ||
self.model, | ||
self.bounds_model, | ||
self.bounds_sigma_high, | ||
self.bounds_sigma_low, | ||
self.optimizer_options, | ||
self.num_optim, | ||
self.selection_method | ||
) | ||
|
||
self.assertIn('summary', results) | ||
self.assertIn('estimated_num_populations', results['summary']) | ||
self.assertIn('final_neg_log_likelihood', results['summary']) | ||
self.assertIn('final_parameters', results['summary']) | ||
|
||
def tearDown(self): | ||
os.remove(self.data_file) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |