Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove import * from codebase and documentation #260

Merged
merged 2 commits into from
Oct 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 7 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -471,7 +471,8 @@ IntegerType()
## Pyspark Core Class Extensions

```
from quinn.extensions import *
import pyspark.sql.functions as F
import quinn
```

### Column Extensions
Expand All @@ -481,39 +482,39 @@ from quinn.extensions import *
Returns a Column indicating whether all values in the Column are False or NULL: `True` if `has_stuff` is `None` or `False`.

```python
source_df.withColumn("is_stuff_falsy", F.col("has_stuff").isFalsy())
source_df.withColumn("is_stuff_falsy", quinn.is_falsy(F.col("has_stuff")))
```

**is_truthy()**

Calculates a boolean expression that is the opposite of is_falsy for the given Column: `True` unless `has_stuff` is `None` or `False`.

```python
source_df.withColumn("is_stuff_truthy", F.col("has_stuff").isTruthy())
source_df.withColumn("is_stuff_truthy", quinn.is_truthy(F.col("has_stuff")))
```

**is_null_or_blank()**

Returns a Boolean value which expresses whether a given column is NULL or contains only blank characters: `True` if `blah` is `null` or blank (the empty string or a string that only contains whitespace).

```python
source_df.withColumn("is_blah_null_or_blank", F.col("blah").isNullOrBlank())
source_df.withColumn("is_blah_null_or_blank", quinn.is_null_or_blank(F.col("blah")))
```

**is_not_in()**

To see if a value is not in a list of values: `True` if `fun_thing` is not included in the `bobs_hobbies` list.

```python
source_df.withColumn("is_not_bobs_hobby", F.col("fun_thing").isNotIn(bobs_hobbies))
source_df.withColumn("is_not_bobs_hobby", quinn.is_not_in(F.col("fun_thing")))
```

**null_between()**

To see if a value is between two values in a null friendly way: `True` if `age` is between `lower_age` and `upper_age`. If `lower_age` is populated and `upper_age` is `null`, it will return `True` if `age` is greater than or equal to `lower_age`. If `lower_age` is `null` and `upper_age` is populate, it will return `True` if `age` is lower than or equal to `upper_age`.

```python
source_df.withColumn("is_between", F.col("age").nullBetween(F.col("lower_age"), F.col("upper_age")))
source_df.withColumn("is_between", quinn.null_between(F.col("age"), F.col("lower_age"), F.col("upper_age")))
```

## Contributing
Expand Down
10 changes: 6 additions & 4 deletions docs/notebooks/schema_as_code.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -112,15 +112,17 @@
}
],
"source": [
"from pyspark.sql.types import *\n",
"print(print_schema_as_code(schema))\n",
"eval(print_schema_as_code(schema))"
"\n",
"# Create a dictionary of PySpark SQL types to provide context to 'eval()' \n",
"spark_type_dict = {k: getattr(T, k) for k in dir(T) if isinstance(getattr(T, k), type)}\n",
"eval(print_schema_as_code(schema), {\"__builtins__\": None}, spark_type_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e66219ad-cacc-4ed6-bbe6-f20d4d20afd4",
"id": "6fb30b81",
"metadata": {},
"outputs": [],
"source": []
Expand All @@ -142,7 +144,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
"version": "3.10.12"
}
},
"nbformat": 4,
Expand Down
13 changes: 7 additions & 6 deletions docs/usage.md
Original file line number Diff line number Diff line change
Expand Up @@ -399,47 +399,48 @@ IntegerType()
## Pyspark Core Class Extensions

```
from quinn.extensions import *
import pyspark.sql.functions as F
import quinn
```

### Column Extensions

**isFalsy()**

```python
source_df.withColumn("is_stuff_falsy", F.col("has_stuff").isFalsy())
source_df.withColumn("is_stuff_falsy", quinn.is_falsy(F.col("has_stuff")))
```

Returns `True` if `has_stuff` is `None` or `False`.

**isTruthy()**

```python
source_df.withColumn("is_stuff_truthy", F.col("has_stuff").isTruthy())
source_df.withColumn("is_stuff_truthy", quinn.is_truthy(F.col("has_stuff")))
```

Returns `True` unless `has_stuff` is `None` or `False`.

**isNullOrBlank()**

```python
source_df.withColumn("is_blah_null_or_blank", F.col("blah").isNullOrBlank())
source_df.withColumn("is_blah_null_or_blank", quinn.is_null_or_blank(F.col("blah")))
```

Returns `True` if `blah` is `null` or blank (the empty string or a string that only contains whitespace).

**isNotIn()**

```python
source_df.withColumn("is_not_bobs_hobby", F.col("fun_thing").isNotIn(bobs_hobbies))
source_df.withColumn("is_not_bobs_hobby", quinn.is_not_in(F.col("fun_thing")))
```

Returns `True` if `fun_thing` is not included in the `bobs_hobbies` list.

**nullBetween()**

```python
source_df.withColumn("is_between", F.col("age").nullBetween(F.col("lower_age"), F.col("upper_age")))
source_df.withColumn("is_between", quinn.null_between(F.col("age"), F.col("lower_age"), F.col("upper_age")))
```

Returns `True` if `age` is between `lower_age` and `upper_age`. If `lower_age` is populated and `upper_age` is `null`, it will return `True` if `age` is greater than or equal to `lower_age`. If `lower_age` is `null` and `upper_age` is populate, it will return `True` if `age` is lower than or equal to `upper_age`.
4 changes: 2 additions & 2 deletions quinn/extensions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,5 +13,5 @@

"""Extensions API."""

from quinn.extensions.dataframe_ext import *
from quinn.extensions.spark_session_ext import *
from quinn.extensions.dataframe_ext import _ext_function
from quinn.extensions.spark_session_ext import create_df
Loading