-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
19 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -11,12 +11,6 @@ import ModuleLocalProperties.MissingLemmas.LocalizedModule | |
|
||
open Submodule LocalizedModule IsLocalizedModule LinearMap nonZeroDivisors | ||
|
||
#check IsLocalization.map_comap | ||
#check Module.annihilator | ||
#check NoZeroSMulDivisors | ||
#check IsLocalization.map_nonZeroDivisors_le | ||
#check IsDomain | ||
|
||
section missinglemma | ||
|
||
lemma IsLocalization.mem_map_nonZeroDivisors {R : Type*} [CommSemiring R] (S : Submonoid R) | ||
|
@@ -111,3 +105,22 @@ lemma localized_torsion [IsDomain R] : | |
exact localized_torsion_nontrival_ge _ _ trivial | ||
|
||
end localized_torsion_commutivity | ||
|
||
section NoZeroSMulDivisors_local_property | ||
|
||
variable {R : Type*} [CommRing R] [IsDomain R] (M : Type*) [AddCommGroup M] [Module R M] | ||
|
||
lemma noZeroSMulDivisors_of_localization (h : ∀ (J : Ideal R) (hJ : J.IsMaximal), | ||
This comment has been minimized.
Sorry, something went wrong. |
||
NoZeroSMulDivisors (Localization J.primeCompl) (LocalizedModule J.primeCompl M)) : | ||
NoZeroSMulDivisors R M := | ||
noZeroSMulDivisors_iff_torsion_eq_bot.mpr <| submodule_eq_bot_of_localization _ <| fun J hJ ↦ | ||
localized_torsion J.primeCompl M ▸ noZeroSMulDivisors_iff_torsion_eq_bot.mp <| h J hJ | ||
|
||
lemma noZeroSMulDivisors_of_localization_iff : | ||
This comment has been minimized.
Sorry, something went wrong.
mbkybky
Owner
|
||
NoZeroSMulDivisors R M ↔ ∀ (J : Ideal R) (hJ : J.IsMaximal), | ||
NoZeroSMulDivisors (Localization J.primeCompl) (LocalizedModule J.primeCompl M) := | ||
⟨fun h J _ ↦ (noZeroSMulDivisors_iff_torsion_eq_bot.mp h) ▸ localized_torsion J.primeCompl M ▸ | ||
noZeroSMulDivisors_iff_torsion_eq_bot.mpr <| localized_bot _ , | ||
fun h ↦ noZeroSMulDivisors_of_localization M h⟩ | ||
|
||
end NoZeroSMulDivisors_local_property |
I think maybe this theorem is true for all
CommRing R
.