-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.NumberTheory.NumberField.Basic | ||
|
||
section | ||
|
||
open Ideal | ||
|
||
attribute [local instance] Ideal.Quotient.field in | ||
/-- If `p` is a non-zero ideal of the `ℤ`, then `ℤ ⧸ p` is finite. -/ | ||
theorem Int.Quotient.finite_of_ne_bot {I : Ideal ℤ} (h : I ≠ ⊥) : Finite (ℤ ⧸ I) := by | ||
have equiv := Int.quotientSpanEquivZMod (Submodule.IsPrincipal.generator I) | ||
rw [span_singleton_generator I] at equiv | ||
haveI : NeZero (Submodule.IsPrincipal.generator I).natAbs := ⟨fun eq ↦ | ||
h ((Submodule.IsPrincipal.eq_bot_iff_generator_eq_zero I).mpr (Int.natAbs_eq_zero.mp eq))⟩ | ||
exact Finite.of_equiv (ZMod (Submodule.IsPrincipal.generator I).natAbs) equiv.symm | ||
|
||
/-- In particular, if `p` is a maximal ideal of the `ℤ`, then `ℤ ⧸ p` is a finite field. -/ | ||
instance Int.Quotient.finite_of_is_maxiaml (p : Ideal ℤ) [hpm : p.IsMaximal] : | ||
Finite (ℤ ⧸ p) := | ||
finite_of_ne_bot (Ring.ne_bot_of_isMaximal_of_not_isField hpm Int.not_isField) | ||
|
||
/- #check Module.finite_of_finite | ||
#check FiniteDimensional.fintypeOfFintype | ||
def Module.Finite.finiteOfFinite {R M : Type*} [CommRing R] [Finite R] [AddCommMonoid M] [Module R M] | ||
[Module.Finite R M] : Finite M := by | ||
have := exists_fin' R M --exact .of_surjective f hf | ||
sorry -/ | ||
|
||
variable {R : Type*} [CommRing R] [h : Module.Finite ℤ R] | ||
|
||
theorem Ideal.Quotient.finite_of_module_finite_int {I : Ideal R} (hp : I ≠ ⊥) : Finite (R ⧸ I) := sorry | ||
|
||
-- `NoZeroSMulDivisors` can be removed | ||
instance Ideal.Quotient.finite_of_module_finite_int_of_isMaxiaml [NoZeroSMulDivisors ℤ R] [IsDomain R] | ||
(p : Ideal R) [hpm : p.IsMaximal] : Finite (R ⧸ p) := | ||
Ideal.Quotient.finite_of_module_finite_int <| Ring.ne_bot_of_isMaximal_of_not_isField hpm <| | ||
fun hf => Int.not_isField <| | ||
(Algebra.IsIntegral.isField_iff_isField (NoZeroSMulDivisors.algebraMap_injective ℤ R)).mpr hf | ||
|
||
end | ||
|
||
namespace NumberField | ||
|
||
variable {K : Type*} [Field K] [NumberField K] | ||
|
||
/-- For any nonzero ideal `I` of `𝓞 K`, `(𝓞 K) ⧸ I` has only finite elements. | ||
Note that if `I` is maximal, then `Finite ((𝓞 K) ⧸ I)` can be obtained by `inferInstance`. -/ | ||
theorem quotientFiniteOfNeBot {I : Ideal (𝓞 K)} (h : I ≠ ⊥) : Finite ((𝓞 K) ⧸ I) := | ||
Ideal.Quotient.finite_of_module_finite_int h | ||
|
||
example (p : Ideal (𝓞 K)) [p.IsMaximal] : Finite ((𝓞 K) ⧸ p) := inferInstance | ||
|
||
/- instance quotientFiniteOfIsMaxiaml (p : Ideal (𝓞 K)) [hpm : p.IsMaximal] : Finite ((𝓞 K) ⧸ p) := | ||
quotientFiniteOfNeBot (Ring.ne_bot_of_isMaximal_of_not_isField hpm (RingOfIntegers.not_isField K)) -/ | ||
|
||
end NumberField |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.LinearAlgebra.FiniteDimensional.Defs | ||
|
||
attribute [local instance] FractionRing.liftAlgebra | ||
|
||
instance {A B : Type*} [CommRing A] [IsDomain A] [CommRing B] [IsDomain B] [Algebra A B] | ||
[Module.Finite A B] [NoZeroSMulDivisors A B] : | ||
FiniteDimensional (FractionRing A) (FractionRing B) := sorry |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.FieldTheory.PurelyInseparable | ||
import Mathlib.NumberTheory.NumberField.Basic | ||
import Mathlib.RingTheory.Valuation.ValuationRing | ||
|
||
attribute [local instance] Ideal.Quotient.field | ||
|
||
variable {A B : Type*} [CommRing A] [IsDomain A] [CommRing B] [IsDomain B] [Algebra A B] | ||
(p : Ideal A) (P : Ideal B) [p.IsMaximal] [P.IsMaximal] [P.LiesOver p] | ||
(K L : Type*) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [Algebra K L] | ||
[Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [Normal K L] | ||
|
||
example : Normal (A ⧸ p) (B ⧸ P) := sorry |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.Algebra.Algebra.Subalgebra.Tower | ||
import Mathlib.LinearAlgebra.Dimension.Finrank | ||
|
||
variable (R S A : Type*) [CommSemiring R] [CommSemiring S] [Semiring A] [Algebra R S] [Algebra S A] | ||
[Algebra R A] [IsScalarTower R S A] | ||
|
||
def AlgEquiv.restrictScalarsHom : (A ≃ₐ[S] A) →* (A ≃ₐ[R] A) where | ||
toFun f := AlgEquiv.restrictScalars R f | ||
map_one' := rfl | ||
map_mul' _ _ := rfl | ||
|
||
theorem AlgEquiv.restrictScalarsHom_injective : Function.Injective (AlgEquiv.restrictScalarsHom R S A) := | ||
AlgEquiv.restrictScalars_injective R | ||
|
||
theorem AlgEquiv.restrictScalarsHom_bot_surjective : | ||
Function.Surjective (AlgEquiv.restrictScalarsHom R (⊥ : Subalgebra R S) S) := sorry | ||
|
||
noncomputable def subalgebra_bot_aut_equiv : (S ≃ₐ[(⊥ : Subalgebra R S)] S) ≃* (S ≃ₐ[R] S) := | ||
MulEquiv.ofBijective _ | ||
⟨AlgEquiv.restrictScalarsHom_injective R _ S, AlgEquiv.restrictScalarsHom_bot_surjective R S⟩ | ||
|
||
noncomputable def aut_equiv_of_finrank_eq_one {R S : Type*} (A : Type*) [CommSemiring R] [CommRing S] | ||
[Semiring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] | ||
(h : Module.finrank R S = 1) : (A ≃ₐ[S] A) ≃* (A ≃ₐ[R] A) := sorry |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.FieldTheory.PurelyInseparable | ||
|
||
namespace separableClosure | ||
|
||
variable (K L : Type*) [Field K] [Field L] [Algebra K L] [Normal K L] | ||
|
||
#check IsPurelyInseparable.injective_comp_algebraMap | ||
|
||
#check instUniqueAlgHomOfIsPurelyInseparable | ||
|
||
#check separableClosure.isPurelyInseparable | ||
|
||
theorem restrictNormalHom_injective : Function.Injective | ||
(AlgEquiv.restrictNormalHom (F := K) (K₁ := L) (separableClosure K L)) := by | ||
sorry | ||
|
||
noncomputable def restrictNormalEquiv : (L ≃ₐ[K] L) ≃* | ||
(separableClosure K L) ≃ₐ[K] (separableClosure K L) := | ||
MulEquiv.ofBijective _ | ||
⟨restrictNormalHom_injective K L, AlgEquiv.restrictNormalHom_surjective L⟩ | ||
|
||
example (e : PowerBasis K (separableClosure K L)) (σ τ : L ≃ₐ[K] L) (h : σ e.gen = τ e.gen) : σ = τ := by | ||
sorry | ||
|
||
example [FiniteDimensional K L] : ∃ x : L, ∀ σ τ : L ≃ₐ[K] L, σ x = τ x → σ = τ := by | ||
sorry | ||
|
||
end separableClosure |